Properties

Label 396.2.h.d
Level 396396
Weight 22
Character orbit 396.h
Analytic conductor 3.1623.162
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(307,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 396=223211 396 = 2^{2} \cdot 3^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 396.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.162075920043.16207592004
Analytic rank: 00
Dimension: 1212
Coefficient field: 12.0.2593100598870016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x122x10+x8+4x6+4x432x2+64 x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β2q4+(β10+β7++β1)q5+(β11+β3)q7+(β10+β9+β3)q8+(β11+β10+β4)q10++(2β11+2β10+β1)q98+O(q100) q + \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{10} + \beta_{7} + \cdots + \beta_1) q^{5} + (\beta_{11} + \beta_{3}) q^{7} + (\beta_{10} + \beta_{9} + \beta_{3}) q^{8} + ( - \beta_{11} + \beta_{10} + \cdots - \beta_{4}) q^{10}+ \cdots + ( - 2 \beta_{11} + 2 \beta_{10} + \cdots - \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q44q14+4q16+28q204q22+20q25+12q26+40q3432q37+8q3836q4412q49+16q53+20q56+24q5820q6464q70+48q97+O(q100) 12 q + 4 q^{4} - 4 q^{14} + 4 q^{16} + 28 q^{20} - 4 q^{22} + 20 q^{25} + 12 q^{26} + 40 q^{34} - 32 q^{37} + 8 q^{38} - 36 q^{44} - 12 q^{49} + 16 q^{53} + 20 q^{56} + 24 q^{58} - 20 q^{64} - 64 q^{70}+ \cdots - 48 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x122x10+x8+4x6+4x432x2+64 x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2 \nu^{2} Copy content Toggle raw display
β3\beta_{3}== (ν9ν5+2ν38ν)/16 ( -\nu^{9} - \nu^{5} + 2\nu^{3} - 8\nu ) / 16 Copy content Toggle raw display
β4\beta_{4}== (ν112ν9+9ν7+4ν5+12ν3+16ν)/64 ( \nu^{11} - 2\nu^{9} + 9\nu^{7} + 4\nu^{5} + 12\nu^{3} + 16\nu ) / 64 Copy content Toggle raw display
β5\beta_{5}== (ν112ν94ν87ν7+4ν5+28ν44ν324ν216ν32)/64 ( \nu^{11} - 2\nu^{9} - 4\nu^{8} - 7\nu^{7} + 4\nu^{5} + 28\nu^{4} - 4\nu^{3} - 24\nu^{2} - 16\nu - 32 ) / 64 Copy content Toggle raw display
β6\beta_{6}== (ν8+ν42ν2+8)/8 ( \nu^{8} + \nu^{4} - 2\nu^{2} + 8 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν11+2ν10+2ν9+7ν714ν64ν5+12ν4+4ν3+48ν2+16ν64)/64 ( -\nu^{11} + 2\nu^{10} + 2\nu^{9} + 7\nu^{7} - 14\nu^{6} - 4\nu^{5} + 12\nu^{4} + 4\nu^{3} + 48\nu^{2} + 16\nu - 64 ) / 64 Copy content Toggle raw display
β8\beta_{8}== (ν11+4ν10+2ν94ν8+7ν7+4ν64ν5+20ν4+96)/64 ( - \nu^{11} + 4 \nu^{10} + 2 \nu^{9} - 4 \nu^{8} + 7 \nu^{7} + 4 \nu^{6} - 4 \nu^{5} + 20 \nu^{4} + \cdots - 96 ) / 64 Copy content Toggle raw display
β9\beta_{9}== (3ν112ν95ν7+16ν5+60ν348ν)/64 ( 3\nu^{11} - 2\nu^{9} - 5\nu^{7} + 16\nu^{5} + 60\nu^{3} - 48\nu ) / 64 Copy content Toggle raw display
β10\beta_{10}== (3ν11+6ν9+5ν712ν54ν3+80ν)/64 ( -3\nu^{11} + 6\nu^{9} + 5\nu^{7} - 12\nu^{5} - 4\nu^{3} + 80\nu ) / 64 Copy content Toggle raw display
β11\beta_{11}== (3ν11+2ν9+5ν7+16ν528ν3+48ν)/64 ( -3\nu^{11} + 2\nu^{9} + 5\nu^{7} + 16\nu^{5} - 28\nu^{3} + 48\nu ) / 64 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2 \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β10+β9+β3 \beta_{10} + \beta_{9} + \beta_{3} Copy content Toggle raw display
ν4\nu^{4}== β10+β6+2β5+β4+β2β1 \beta_{10} + \beta_{6} + 2\beta_{5} + \beta_{4} + \beta_{2} - \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 2β11β10+β9β3 2\beta_{11} - \beta_{10} + \beta_{9} - \beta_{3} Copy content Toggle raw display
ν6\nu^{6}== β10+2β84β7+β6+β4+3β2β12 \beta_{10} + 2\beta_{8} - 4\beta_{7} + \beta_{6} + \beta_{4} + 3\beta_{2} - \beta _1 - 2 Copy content Toggle raw display
ν7\nu^{7}== β10β9+6β4β34β1 \beta_{10} - \beta_{9} + 6\beta_{4} - \beta_{3} - 4\beta_1 Copy content Toggle raw display
ν8\nu^{8}== β10+7β62β5β4+β2+β18 -\beta_{10} + 7\beta_{6} - 2\beta_{5} - \beta_{4} + \beta_{2} + \beta _1 - 8 Copy content Toggle raw display
ν9\nu^{9}== 2β11+3β10+β913β38β1 -2\beta_{11} + 3\beta_{10} + \beta_{9} - 13\beta_{3} - 8\beta_1 Copy content Toggle raw display
ν10\nu^{10}== 15β10+14β8+4β7+β612β515β49β2+15β1+18 -15\beta_{10} + 14\beta_{8} + 4\beta_{7} + \beta_{6} - 12\beta_{5} - 15\beta_{4} - 9\beta_{2} + 15\beta _1 + 18 Copy content Toggle raw display
ν11\nu^{11}== 12β1111β105β9+10β425β3+4β1 -12\beta_{11} - 11\beta_{10} - 5\beta_{9} + 10\beta_{4} - 25\beta_{3} + 4\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/396Z)×\left(\mathbb{Z}/396\mathbb{Z}\right)^\times.

nn 145145 199199 353353
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
−1.37027 0.349801i
−1.37027 + 0.349801i
−1.19877 0.750295i
−1.19877 + 0.750295i
−0.430469 1.34711i
−0.430469 + 1.34711i
0.430469 1.34711i
0.430469 + 1.34711i
1.19877 0.750295i
1.19877 + 0.750295i
1.37027 0.349801i
1.37027 + 0.349801i
−1.37027 0.349801i 0 1.75528 + 0.958643i −0.406728 0 −2.27740 −2.06987 1.92760i 0 0.557328 + 0.142274i
307.2 −1.37027 + 0.349801i 0 1.75528 0.958643i −0.406728 0 −2.27740 −2.06987 + 1.92760i 0 0.557328 0.142274i
307.3 −1.19877 0.750295i 0 0.874114 + 1.79887i 3.34596 0 3.56257 0.301817 2.81228i 0 −4.01105 2.51046i
307.4 −1.19877 + 0.750295i 0 0.874114 1.79887i 3.34596 0 3.56257 0.301817 + 2.81228i 0 −4.01105 + 2.51046i
307.5 −0.430469 1.34711i 0 −1.62939 + 1.15978i −2.93923 0 −0.348612 2.26374 + 1.69572i 0 1.26525 + 3.95946i
307.6 −0.430469 + 1.34711i 0 −1.62939 1.15978i −2.93923 0 −0.348612 2.26374 1.69572i 0 1.26525 3.95946i
307.7 0.430469 1.34711i 0 −1.62939 1.15978i −2.93923 0 0.348612 −2.26374 + 1.69572i 0 −1.26525 + 3.95946i
307.8 0.430469 + 1.34711i 0 −1.62939 + 1.15978i −2.93923 0 0.348612 −2.26374 1.69572i 0 −1.26525 3.95946i
307.9 1.19877 0.750295i 0 0.874114 1.79887i 3.34596 0 −3.56257 −0.301817 2.81228i 0 4.01105 2.51046i
307.10 1.19877 + 0.750295i 0 0.874114 + 1.79887i 3.34596 0 −3.56257 −0.301817 + 2.81228i 0 4.01105 + 2.51046i
307.11 1.37027 0.349801i 0 1.75528 0.958643i −0.406728 0 2.27740 2.06987 1.92760i 0 −0.557328 + 0.142274i
307.12 1.37027 + 0.349801i 0 1.75528 + 0.958643i −0.406728 0 2.27740 2.06987 + 1.92760i 0 −0.557328 0.142274i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.2.h.d 12
3.b odd 2 1 132.2.h.a 12
4.b odd 2 1 inner 396.2.h.d 12
11.b odd 2 1 inner 396.2.h.d 12
12.b even 2 1 132.2.h.a 12
24.f even 2 1 2112.2.o.g 12
24.h odd 2 1 2112.2.o.g 12
33.d even 2 1 132.2.h.a 12
44.c even 2 1 inner 396.2.h.d 12
132.d odd 2 1 132.2.h.a 12
264.m even 2 1 2112.2.o.g 12
264.p odd 2 1 2112.2.o.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.h.a 12 3.b odd 2 1
132.2.h.a 12 12.b even 2 1
132.2.h.a 12 33.d even 2 1
132.2.h.a 12 132.d odd 2 1
396.2.h.d 12 1.a even 1 1 trivial
396.2.h.d 12 4.b odd 2 1 inner
396.2.h.d 12 11.b odd 2 1 inner
396.2.h.d 12 44.c even 2 1 inner
2112.2.o.g 12 24.f even 2 1
2112.2.o.g 12 24.h odd 2 1
2112.2.o.g 12 264.m even 2 1
2112.2.o.g 12 264.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5310T54 T_{5}^{3} - 10T_{5} - 4 acting on S2new(396,[χ])S_{2}^{\mathrm{new}}(396, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T122T10++64 T^{12} - 2 T^{10} + \cdots + 64 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 (T310T4)4 (T^{3} - 10 T - 4)^{4} Copy content Toggle raw display
77 (T618T4+68T28)2 (T^{6} - 18 T^{4} + 68 T^{2} - 8)^{2} Copy content Toggle raw display
1111 T12+2T10++1771561 T^{12} + 2 T^{10} + \cdots + 1771561 Copy content Toggle raw display
1313 (T6+16T4++32)2 (T^{6} + 16 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
1717 (T6+66T4++32)2 (T^{6} + 66 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
1919 (T666T4+800)2 (T^{6} - 66 T^{4} + \cdots - 800)^{2} Copy content Toggle raw display
2323 (T6+20T4++16)2 (T^{6} + 20 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
2929 (T6+138T4++86528)2 (T^{6} + 138 T^{4} + \cdots + 86528)^{2} Copy content Toggle raw display
3131 (T6+104T4++25600)2 (T^{6} + 104 T^{4} + \cdots + 25600)^{2} Copy content Toggle raw display
3737 (T3+8T2+128)4 (T^{3} + 8 T^{2} + \cdots - 128)^{4} Copy content Toggle raw display
4141 (T6+170T4++80000)2 (T^{6} + 170 T^{4} + \cdots + 80000)^{2} Copy content Toggle raw display
4343 (T6130T4+32)2 (T^{6} - 130 T^{4} + \cdots - 32)^{2} Copy content Toggle raw display
4747 (T6+176T4++65536)2 (T^{6} + 176 T^{4} + \cdots + 65536)^{2} Copy content Toggle raw display
5353 (T34T2++652)4 (T^{3} - 4 T^{2} + \cdots + 652)^{4} Copy content Toggle raw display
5959 (T6+100T4++256)2 (T^{6} + 100 T^{4} + \cdots + 256)^{2} Copy content Toggle raw display
6161 (T6+184T4++12800)2 (T^{6} + 184 T^{4} + \cdots + 12800)^{2} Copy content Toggle raw display
6767 (T6+72T4++256)2 (T^{6} + 72 T^{4} + \cdots + 256)^{2} Copy content Toggle raw display
7171 (T6+128T4++6400)2 (T^{6} + 128 T^{4} + \cdots + 6400)^{2} Copy content Toggle raw display
7373 (T6+456T4++2580992)2 (T^{6} + 456 T^{4} + \cdots + 2580992)^{2} Copy content Toggle raw display
7979 (T666T4+9800)2 (T^{6} - 66 T^{4} + \cdots - 9800)^{2} Copy content Toggle raw display
8383 (T6320T4+346112)2 (T^{6} - 320 T^{4} + \cdots - 346112)^{2} Copy content Toggle raw display
8989 (T32T2+200)4 (T^{3} - 2 T^{2} + \cdots - 200)^{4} Copy content Toggle raw display
9797 (T3+12T2+64)4 (T^{3} + 12 T^{2} + \cdots - 64)^{4} Copy content Toggle raw display
show more
show less