Properties

Label 396.2.h.d
Level $396$
Weight $2$
Character orbit 396.h
Analytic conductor $3.162$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(307,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{10} + \beta_{7} + \cdots + \beta_1) q^{5} + (\beta_{11} + \beta_{3}) q^{7} + (\beta_{10} + \beta_{9} + \beta_{3}) q^{8} + ( - \beta_{11} + \beta_{10} + \cdots - \beta_{4}) q^{10}+ \cdots + ( - 2 \beta_{11} + 2 \beta_{10} + \cdots - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 4 q^{14} + 4 q^{16} + 28 q^{20} - 4 q^{22} + 20 q^{25} + 12 q^{26} + 40 q^{34} - 32 q^{37} + 8 q^{38} - 36 q^{44} - 12 q^{49} + 16 q^{53} + 20 q^{56} + 24 q^{58} - 20 q^{64} - 64 q^{70}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{9} - \nu^{5} + 2\nu^{3} - 8\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{11} - 2\nu^{9} + 9\nu^{7} + 4\nu^{5} + 12\nu^{3} + 16\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} - 2\nu^{9} - 4\nu^{8} - 7\nu^{7} + 4\nu^{5} + 28\nu^{4} - 4\nu^{3} - 24\nu^{2} - 16\nu - 32 ) / 64 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{8} + \nu^{4} - 2\nu^{2} + 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{11} + 2\nu^{10} + 2\nu^{9} + 7\nu^{7} - 14\nu^{6} - 4\nu^{5} + 12\nu^{4} + 4\nu^{3} + 48\nu^{2} + 16\nu - 64 ) / 64 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - \nu^{11} + 4 \nu^{10} + 2 \nu^{9} - 4 \nu^{8} + 7 \nu^{7} + 4 \nu^{6} - 4 \nu^{5} + 20 \nu^{4} + \cdots - 96 ) / 64 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 3\nu^{11} - 2\nu^{9} - 5\nu^{7} + 16\nu^{5} + 60\nu^{3} - 48\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -3\nu^{11} + 6\nu^{9} + 5\nu^{7} - 12\nu^{5} - 4\nu^{3} + 80\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -3\nu^{11} + 2\nu^{9} + 5\nu^{7} + 16\nu^{5} - 28\nu^{3} + 48\nu ) / 64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{10} + \beta_{9} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{10} + \beta_{6} + 2\beta_{5} + \beta_{4} + \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{11} - \beta_{10} + \beta_{9} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{10} + 2\beta_{8} - 4\beta_{7} + \beta_{6} + \beta_{4} + 3\beta_{2} - \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{10} - \beta_{9} + 6\beta_{4} - \beta_{3} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -\beta_{10} + 7\beta_{6} - 2\beta_{5} - \beta_{4} + \beta_{2} + \beta _1 - 8 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -2\beta_{11} + 3\beta_{10} + \beta_{9} - 13\beta_{3} - 8\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -15\beta_{10} + 14\beta_{8} + 4\beta_{7} + \beta_{6} - 12\beta_{5} - 15\beta_{4} - 9\beta_{2} + 15\beta _1 + 18 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -12\beta_{11} - 11\beta_{10} - 5\beta_{9} + 10\beta_{4} - 25\beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
−1.37027 0.349801i
−1.37027 + 0.349801i
−1.19877 0.750295i
−1.19877 + 0.750295i
−0.430469 1.34711i
−0.430469 + 1.34711i
0.430469 1.34711i
0.430469 + 1.34711i
1.19877 0.750295i
1.19877 + 0.750295i
1.37027 0.349801i
1.37027 + 0.349801i
−1.37027 0.349801i 0 1.75528 + 0.958643i −0.406728 0 −2.27740 −2.06987 1.92760i 0 0.557328 + 0.142274i
307.2 −1.37027 + 0.349801i 0 1.75528 0.958643i −0.406728 0 −2.27740 −2.06987 + 1.92760i 0 0.557328 0.142274i
307.3 −1.19877 0.750295i 0 0.874114 + 1.79887i 3.34596 0 3.56257 0.301817 2.81228i 0 −4.01105 2.51046i
307.4 −1.19877 + 0.750295i 0 0.874114 1.79887i 3.34596 0 3.56257 0.301817 + 2.81228i 0 −4.01105 + 2.51046i
307.5 −0.430469 1.34711i 0 −1.62939 + 1.15978i −2.93923 0 −0.348612 2.26374 + 1.69572i 0 1.26525 + 3.95946i
307.6 −0.430469 + 1.34711i 0 −1.62939 1.15978i −2.93923 0 −0.348612 2.26374 1.69572i 0 1.26525 3.95946i
307.7 0.430469 1.34711i 0 −1.62939 1.15978i −2.93923 0 0.348612 −2.26374 + 1.69572i 0 −1.26525 + 3.95946i
307.8 0.430469 + 1.34711i 0 −1.62939 + 1.15978i −2.93923 0 0.348612 −2.26374 1.69572i 0 −1.26525 3.95946i
307.9 1.19877 0.750295i 0 0.874114 1.79887i 3.34596 0 −3.56257 −0.301817 2.81228i 0 4.01105 2.51046i
307.10 1.19877 + 0.750295i 0 0.874114 + 1.79887i 3.34596 0 −3.56257 −0.301817 + 2.81228i 0 4.01105 + 2.51046i
307.11 1.37027 0.349801i 0 1.75528 0.958643i −0.406728 0 2.27740 2.06987 1.92760i 0 −0.557328 + 0.142274i
307.12 1.37027 + 0.349801i 0 1.75528 + 0.958643i −0.406728 0 2.27740 2.06987 + 1.92760i 0 −0.557328 0.142274i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.2.h.d 12
3.b odd 2 1 132.2.h.a 12
4.b odd 2 1 inner 396.2.h.d 12
11.b odd 2 1 inner 396.2.h.d 12
12.b even 2 1 132.2.h.a 12
24.f even 2 1 2112.2.o.g 12
24.h odd 2 1 2112.2.o.g 12
33.d even 2 1 132.2.h.a 12
44.c even 2 1 inner 396.2.h.d 12
132.d odd 2 1 132.2.h.a 12
264.m even 2 1 2112.2.o.g 12
264.p odd 2 1 2112.2.o.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.h.a 12 3.b odd 2 1
132.2.h.a 12 12.b even 2 1
132.2.h.a 12 33.d even 2 1
132.2.h.a 12 132.d odd 2 1
396.2.h.d 12 1.a even 1 1 trivial
396.2.h.d 12 4.b odd 2 1 inner
396.2.h.d 12 11.b odd 2 1 inner
396.2.h.d 12 44.c even 2 1 inner
2112.2.o.g 12 24.f even 2 1
2112.2.o.g 12 24.h odd 2 1
2112.2.o.g 12 264.m even 2 1
2112.2.o.g 12 264.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 10T_{5} - 4 \) acting on \(S_{2}^{\mathrm{new}}(396, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 2 T^{10} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( (T^{3} - 10 T - 4)^{4} \) Copy content Toggle raw display
$7$ \( (T^{6} - 18 T^{4} + 68 T^{2} - 8)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + 2 T^{10} + \cdots + 1771561 \) Copy content Toggle raw display
$13$ \( (T^{6} + 16 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 66 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 66 T^{4} + \cdots - 800)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} + 20 T^{4} + \cdots + 16)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 138 T^{4} + \cdots + 86528)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 104 T^{4} + \cdots + 25600)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 8 T^{2} + \cdots - 128)^{4} \) Copy content Toggle raw display
$41$ \( (T^{6} + 170 T^{4} + \cdots + 80000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} - 130 T^{4} + \cdots - 32)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + 176 T^{4} + \cdots + 65536)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 4 T^{2} + \cdots + 652)^{4} \) Copy content Toggle raw display
$59$ \( (T^{6} + 100 T^{4} + \cdots + 256)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} + 184 T^{4} + \cdots + 12800)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} + 72 T^{4} + \cdots + 256)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 128 T^{4} + \cdots + 6400)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 456 T^{4} + \cdots + 2580992)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 66 T^{4} + \cdots - 9800)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 320 T^{4} + \cdots - 346112)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 2 T^{2} + \cdots - 200)^{4} \) Copy content Toggle raw display
$97$ \( (T^{3} + 12 T^{2} + \cdots - 64)^{4} \) Copy content Toggle raw display
show more
show less