L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.951 + 0.309i)5-s + (−1.16 − 1.59i)7-s + (−0.809 − 0.587i)8-s + 0.999i·10-s + (−0.156 + 0.987i)11-s + (0.863 − 0.280i)13-s + (1.16 − 1.59i)14-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)19-s + (−0.951 + 0.309i)20-s + (−0.987 + 0.156i)22-s + 1.61i·23-s + (0.809 + 0.587i)25-s + (0.533 + 0.734i)26-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.951 + 0.309i)5-s + (−1.16 − 1.59i)7-s + (−0.809 − 0.587i)8-s + 0.999i·10-s + (−0.156 + 0.987i)11-s + (0.863 − 0.280i)13-s + (1.16 − 1.59i)14-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)19-s + (−0.951 + 0.309i)20-s + (−0.987 + 0.156i)22-s + 1.61i·23-s + (0.809 + 0.587i)25-s + (0.533 + 0.734i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.422 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.422 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.481799063\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.481799063\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.951 - 0.309i)T \) |
| 11 | \( 1 + (0.156 - 0.987i)T \) |
good | 7 | \( 1 + (1.16 + 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.863 + 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.61iT - T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.44 + 1.04i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.253 - 0.183i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-1.11 + 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-1.04 - 1.44i)T + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + 0.312iT - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.828339766243672067784300892253, −7.52973112452388742617903196878, −7.30333206183258453680634021742, −6.63148328503522691658231682721, −5.90917716695953143924542274681, −5.25623953817212222934631272855, −4.11705539995037436833043978138, −3.65365548105367691424483610897, −2.64522871970484653334397824677, −1.02397938545570086339597966092,
1.01855643797560794593288604239, 2.35030793761958260666208541378, 2.76661879373709806735809045412, 3.66057438486672440453985772199, 4.75169852463133925319726706989, 5.69802617454890655040955431756, 6.00916308767809429198804498962, 6.52688327775229899459714285694, 8.361599873605852928913109014502, 8.638992913954445298202071406176