L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (0.587 − 0.809i)5-s + (−0.863 − 0.280i)7-s + (−0.309 − 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (−0.183 − 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (−0.587 − 0.809i)20-s + (−0.453 + 0.891i)22-s − 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (0.587 − 0.809i)5-s + (−0.863 − 0.280i)7-s + (−0.309 − 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (−0.183 − 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (−0.587 − 0.809i)20-s + (−0.453 + 0.891i)22-s − 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.971+0.237i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.971+0.237i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.971+0.237i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(899,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), −0.971+0.237i)
|
Particular Values
L(21) |
≈ |
1.502747289 |
L(21) |
≈ |
1.502747289 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809+0.587i)T |
| 3 | 1 |
| 5 | 1+(−0.587+0.809i)T |
| 11 | 1+(0.891−0.453i)T |
good | 7 | 1+(0.863+0.280i)T+(0.809+0.587i)T2 |
| 13 | 1+(0.183+0.253i)T+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(1.53−0.5i)T+(0.809−0.587i)T2 |
| 23 | 1+0.618iT−T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(−0.610+1.87i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.550+1.69i)T+(−0.809+0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−1.11+0.363i)T+(0.809−0.587i)T2 |
| 53 | 1+(−1.11−1.53i)T+(−0.309+0.951i)T2 |
| 59 | 1+(−1.87−0.610i)T+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(−0.809−0.587i)T2 |
| 79 | 1+(0.309−0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1−1.78iT−T2 |
| 97 | 1+(−0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.495603176270209003734524661676, −7.37270963441028082645805522258, −6.65233565662987081871757387088, −5.75967181322975658376772856243, −5.40120214242517616385106308428, −4.32839778993733339051109219915, −3.88057184910714194355048784841, −2.54551535579712957931042437436, −2.09153950109428485083449702290, −0.57230714002438209295372184283,
2.15773470164578341512008236861, 2.83907826971129951337227186267, 3.49006455735451405544661291710, 4.56568910626037010252924689162, 5.38044382831601193633013426523, 6.17288430239964113025284690661, 6.54866277458579785526002151657, 7.24086419991669941734196866568, 8.158575050262809007428632810857, 8.759502829277375495413353512041