Properties

Label 2-3960-1320.899-c0-0-7
Degree 22
Conductor 39603960
Sign 0.971+0.237i-0.971 + 0.237i
Analytic cond. 1.976291.97629
Root an. cond. 1.405801.40580
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (0.587 − 0.809i)5-s + (−0.863 − 0.280i)7-s + (−0.309 − 0.951i)8-s i·10-s + (−0.891 + 0.453i)11-s + (−0.183 − 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (−0.587 − 0.809i)20-s + (−0.453 + 0.891i)22-s − 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯
L(s)  = 1  + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (0.587 − 0.809i)5-s + (−0.863 − 0.280i)7-s + (−0.309 − 0.951i)8-s i·10-s + (−0.891 + 0.453i)11-s + (−0.183 − 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (−0.587 − 0.809i)20-s + (−0.453 + 0.891i)22-s − 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯

Functional equation

Λ(s)=(3960s/2ΓC(s)L(s)=((0.971+0.237i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3960s/2ΓC(s)L(s)=((0.971+0.237i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 39603960    =    23325112^{3} \cdot 3^{2} \cdot 5 \cdot 11
Sign: 0.971+0.237i-0.971 + 0.237i
Analytic conductor: 1.976291.97629
Root analytic conductor: 1.405801.40580
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3960(899,)\chi_{3960} (899, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3960, ( :0), 0.971+0.237i)(2,\ 3960,\ (\ :0),\ -0.971 + 0.237i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.5027472891.502747289
L(12)L(\frac12) \approx 1.5027472891.502747289
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
3 1 1
5 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
11 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
good7 1+(0.863+0.280i)T+(0.809+0.587i)T2 1 + (0.863 + 0.280i)T + (0.809 + 0.587i)T^{2}
13 1+(0.183+0.253i)T+(0.309+0.951i)T2 1 + (0.183 + 0.253i)T + (-0.309 + 0.951i)T^{2}
17 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
19 1+(1.530.5i)T+(0.8090.587i)T2 1 + (1.53 - 0.5i)T + (0.809 - 0.587i)T^{2}
23 1+0.618iTT2 1 + 0.618iT - T^{2}
29 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
31 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
37 1+(0.610+1.87i)T+(0.8090.587i)T2 1 + (-0.610 + 1.87i)T + (-0.809 - 0.587i)T^{2}
41 1+(0.550+1.69i)T+(0.809+0.587i)T2 1 + (0.550 + 1.69i)T + (-0.809 + 0.587i)T^{2}
43 1+T2 1 + T^{2}
47 1+(1.11+0.363i)T+(0.8090.587i)T2 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2}
53 1+(1.111.53i)T+(0.309+0.951i)T2 1 + (-1.11 - 1.53i)T + (-0.309 + 0.951i)T^{2}
59 1+(1.870.610i)T+(0.809+0.587i)T2 1 + (-1.87 - 0.610i)T + (0.809 + 0.587i)T^{2}
61 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
67 1T2 1 - T^{2}
71 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
73 1+(0.8090.587i)T2 1 + (-0.809 - 0.587i)T^{2}
79 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
83 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
89 11.78iTT2 1 - 1.78iT - T^{2}
97 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.495603176270209003734524661676, −7.37270963441028082645805522258, −6.65233565662987081871757387088, −5.75967181322975658376772856243, −5.40120214242517616385106308428, −4.32839778993733339051109219915, −3.88057184910714194355048784841, −2.54551535579712957931042437436, −2.09153950109428485083449702290, −0.57230714002438209295372184283, 2.15773470164578341512008236861, 2.83907826971129951337227186267, 3.49006455735451405544661291710, 4.56568910626037010252924689162, 5.38044382831601193633013426523, 6.17288430239964113025284690661, 6.54866277458579785526002151657, 7.24086419991669941734196866568, 8.158575050262809007428632810857, 8.759502829277375495413353512041

Graph of the ZZ-function along the critical line