Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3960,1,Mod(899,3960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3960, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 5, 5, 3]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3960.899");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3960.eg (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
899.1 |
|
0.809017 | − | 0.587785i | 0 | 0.309017 | − | 0.951057i | −0.587785 | + | 0.809017i | 0 | −1.69480 | − | 0.550672i | −0.309017 | − | 0.951057i | 0 | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
899.2 | 0.809017 | − | 0.587785i | 0 | 0.309017 | − | 0.951057i | −0.587785 | + | 0.809017i | 0 | 1.69480 | + | 0.550672i | −0.309017 | − | 0.951057i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
899.3 | 0.809017 | − | 0.587785i | 0 | 0.309017 | − | 0.951057i | 0.587785 | − | 0.809017i | 0 | −0.863541 | − | 0.280582i | −0.309017 | − | 0.951057i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
899.4 | 0.809017 | − | 0.587785i | 0 | 0.309017 | − | 0.951057i | 0.587785 | − | 0.809017i | 0 | 0.863541 | + | 0.280582i | −0.309017 | − | 0.951057i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1619.1 | −0.309017 | + | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | −1.16110 | + | 1.59811i | 0.809017 | − | 0.587785i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1619.2 | −0.309017 | + | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | 1.16110 | − | 1.59811i | 0.809017 | − | 0.587785i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1619.3 | −0.309017 | + | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | −0.183900 | + | 0.253116i | 0.809017 | − | 0.587785i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1619.4 | −0.309017 | + | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | 0.183900 | − | 0.253116i | 0.809017 | − | 0.587785i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2339.1 | 0.809017 | + | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | −1.69480 | + | 0.550672i | −0.309017 | + | 0.951057i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2339.2 | 0.809017 | + | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | 1.69480 | − | 0.550672i | −0.309017 | + | 0.951057i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2339.3 | 0.809017 | + | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | −0.863541 | + | 0.280582i | −0.309017 | + | 0.951057i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2339.4 | 0.809017 | + | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | 0.863541 | − | 0.280582i | −0.309017 | + | 0.951057i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3779.1 | −0.309017 | − | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | −1.16110 | − | 1.59811i | 0.809017 | + | 0.587785i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3779.2 | −0.309017 | − | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | 1.16110 | + | 1.59811i | 0.809017 | + | 0.587785i | 0 | 1.00000i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3779.3 | −0.309017 | − | 0.951057i | 0 | −0.809017 | + | 0.587785i | 0.951057 | + | 0.309017i | 0 | −0.183900 | − | 0.253116i | 0.809017 | + | 0.587785i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3779.4 | −0.309017 | − | 0.951057i | 0 | −0.809017 | + | 0.587785i | 0.951057 | + | 0.309017i | 0 | 0.183900 | + | 0.253116i | 0.809017 | + | 0.587785i | 0 | − | 1.00000i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
40.e | odd | 2 | 1 | CM by |
15.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
33.f | even | 10 | 1 | inner |
55.h | odd | 10 | 1 | inner |
88.k | even | 10 | 1 | inner |
1320.da | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3960.1.eg.b | yes | 16 |
3.b | odd | 2 | 1 | 3960.1.eg.a | ✓ | 16 | |
5.b | even | 2 | 1 | 3960.1.eg.a | ✓ | 16 | |
8.d | odd | 2 | 1 | 3960.1.eg.a | ✓ | 16 | |
11.d | odd | 10 | 1 | 3960.1.eg.a | ✓ | 16 | |
15.d | odd | 2 | 1 | inner | 3960.1.eg.b | yes | 16 |
24.f | even | 2 | 1 | inner | 3960.1.eg.b | yes | 16 |
33.f | even | 10 | 1 | inner | 3960.1.eg.b | yes | 16 |
40.e | odd | 2 | 1 | CM | 3960.1.eg.b | yes | 16 |
55.h | odd | 10 | 1 | inner | 3960.1.eg.b | yes | 16 |
88.k | even | 10 | 1 | inner | 3960.1.eg.b | yes | 16 |
120.m | even | 2 | 1 | 3960.1.eg.a | ✓ | 16 | |
165.r | even | 10 | 1 | 3960.1.eg.a | ✓ | 16 | |
264.r | odd | 10 | 1 | 3960.1.eg.a | ✓ | 16 | |
440.bm | even | 10 | 1 | 3960.1.eg.a | ✓ | 16 | |
1320.da | odd | 10 | 1 | inner | 3960.1.eg.b | yes | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3960.1.eg.a | ✓ | 16 | 3.b | odd | 2 | 1 | |
3960.1.eg.a | ✓ | 16 | 5.b | even | 2 | 1 | |
3960.1.eg.a | ✓ | 16 | 8.d | odd | 2 | 1 | |
3960.1.eg.a | ✓ | 16 | 11.d | odd | 10 | 1 | |
3960.1.eg.a | ✓ | 16 | 120.m | even | 2 | 1 | |
3960.1.eg.a | ✓ | 16 | 165.r | even | 10 | 1 | |
3960.1.eg.a | ✓ | 16 | 264.r | odd | 10 | 1 | |
3960.1.eg.a | ✓ | 16 | 440.bm | even | 10 | 1 | |
3960.1.eg.b | yes | 16 | 1.a | even | 1 | 1 | trivial |
3960.1.eg.b | yes | 16 | 15.d | odd | 2 | 1 | inner |
3960.1.eg.b | yes | 16 | 24.f | even | 2 | 1 | inner |
3960.1.eg.b | yes | 16 | 33.f | even | 10 | 1 | inner |
3960.1.eg.b | yes | 16 | 40.e | odd | 2 | 1 | CM |
3960.1.eg.b | yes | 16 | 55.h | odd | 10 | 1 | inner |
3960.1.eg.b | yes | 16 | 88.k | even | 10 | 1 | inner |
3960.1.eg.b | yes | 16 | 1320.da | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .