L(s) = 1 | + 1.23·2-s − 2.02·3-s − 0.482·4-s + 2.63·5-s − 2.49·6-s + 3.75·7-s − 3.05·8-s + 1.11·9-s + 3.24·10-s − 11-s + 0.978·12-s − 1.64·13-s + 4.62·14-s − 5.33·15-s − 2.80·16-s − 1.41·17-s + 1.36·18-s − 1.26·20-s − 7.62·21-s − 1.23·22-s − 2.42·23-s + 6.20·24-s + 1.92·25-s − 2.03·26-s + 3.82·27-s − 1.81·28-s + 7.21·29-s + ⋯ |
L(s) = 1 | + 0.871·2-s − 1.17·3-s − 0.241·4-s + 1.17·5-s − 1.01·6-s + 1.42·7-s − 1.08·8-s + 0.370·9-s + 1.02·10-s − 0.301·11-s + 0.282·12-s − 0.457·13-s + 1.23·14-s − 1.37·15-s − 0.700·16-s − 0.342·17-s + 0.322·18-s − 0.283·20-s − 1.66·21-s − 0.262·22-s − 0.505·23-s + 1.26·24-s + 0.384·25-s − 0.398·26-s + 0.736·27-s − 0.342·28-s + 1.33·29-s + ⋯ |
Λ(s)=(=(3971s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3971s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+T |
| 19 | 1 |
good | 2 | 1−1.23T+2T2 |
| 3 | 1+2.02T+3T2 |
| 5 | 1−2.63T+5T2 |
| 7 | 1−3.75T+7T2 |
| 13 | 1+1.64T+13T2 |
| 17 | 1+1.41T+17T2 |
| 23 | 1+2.42T+23T2 |
| 29 | 1−7.21T+29T2 |
| 31 | 1+9.66T+31T2 |
| 37 | 1+9.68T+37T2 |
| 41 | 1+12.2T+41T2 |
| 43 | 1+5.93T+43T2 |
| 47 | 1−0.0866T+47T2 |
| 53 | 1+1.19T+53T2 |
| 59 | 1+2.72T+59T2 |
| 61 | 1−11.7T+61T2 |
| 67 | 1−4.15T+67T2 |
| 71 | 1−2.63T+71T2 |
| 73 | 1−12.2T+73T2 |
| 79 | 1−3.17T+79T2 |
| 83 | 1+1.23T+83T2 |
| 89 | 1+15.2T+89T2 |
| 97 | 1+3.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.234609058282839573893145176082, −6.95273130391521232708365123988, −6.37745555182308308932353118086, −5.36077469066162409311095072548, −5.30667442258187139649416571842, −4.73556571190055223461658466814, −3.66454799691653072544041252701, −2.40228142487565428710539188251, −1.53159151173408042787073134414, 0,
1.53159151173408042787073134414, 2.40228142487565428710539188251, 3.66454799691653072544041252701, 4.73556571190055223461658466814, 5.30667442258187139649416571842, 5.36077469066162409311095072548, 6.37745555182308308932353118086, 6.95273130391521232708365123988, 8.234609058282839573893145176082