Properties

Label 2-3971-1.1-c1-0-223
Degree $2$
Conductor $3971$
Sign $-1$
Analytic cond. $31.7085$
Root an. cond. $5.63103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.23·2-s − 2.02·3-s − 0.482·4-s + 2.63·5-s − 2.49·6-s + 3.75·7-s − 3.05·8-s + 1.11·9-s + 3.24·10-s − 11-s + 0.978·12-s − 1.64·13-s + 4.62·14-s − 5.33·15-s − 2.80·16-s − 1.41·17-s + 1.36·18-s − 1.26·20-s − 7.62·21-s − 1.23·22-s − 2.42·23-s + 6.20·24-s + 1.92·25-s − 2.03·26-s + 3.82·27-s − 1.81·28-s + 7.21·29-s + ⋯
L(s)  = 1  + 0.871·2-s − 1.17·3-s − 0.241·4-s + 1.17·5-s − 1.01·6-s + 1.42·7-s − 1.08·8-s + 0.370·9-s + 1.02·10-s − 0.301·11-s + 0.282·12-s − 0.457·13-s + 1.23·14-s − 1.37·15-s − 0.700·16-s − 0.342·17-s + 0.322·18-s − 0.283·20-s − 1.66·21-s − 0.262·22-s − 0.505·23-s + 1.26·24-s + 0.384·25-s − 0.398·26-s + 0.736·27-s − 0.342·28-s + 1.33·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3971\)    =    \(11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(31.7085\)
Root analytic conductor: \(5.63103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3971,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
19 \( 1 \)
good2 \( 1 - 1.23T + 2T^{2} \)
3 \( 1 + 2.02T + 3T^{2} \)
5 \( 1 - 2.63T + 5T^{2} \)
7 \( 1 - 3.75T + 7T^{2} \)
13 \( 1 + 1.64T + 13T^{2} \)
17 \( 1 + 1.41T + 17T^{2} \)
23 \( 1 + 2.42T + 23T^{2} \)
29 \( 1 - 7.21T + 29T^{2} \)
31 \( 1 + 9.66T + 31T^{2} \)
37 \( 1 + 9.68T + 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 5.93T + 43T^{2} \)
47 \( 1 - 0.0866T + 47T^{2} \)
53 \( 1 + 1.19T + 53T^{2} \)
59 \( 1 + 2.72T + 59T^{2} \)
61 \( 1 - 11.7T + 61T^{2} \)
67 \( 1 - 4.15T + 67T^{2} \)
71 \( 1 - 2.63T + 71T^{2} \)
73 \( 1 - 12.2T + 73T^{2} \)
79 \( 1 - 3.17T + 79T^{2} \)
83 \( 1 + 1.23T + 83T^{2} \)
89 \( 1 + 15.2T + 89T^{2} \)
97 \( 1 + 3.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.234609058282839573893145176082, −6.95273130391521232708365123988, −6.37745555182308308932353118086, −5.36077469066162409311095072548, −5.30667442258187139649416571842, −4.73556571190055223461658466814, −3.66454799691653072544041252701, −2.40228142487565428710539188251, −1.53159151173408042787073134414, 0, 1.53159151173408042787073134414, 2.40228142487565428710539188251, 3.66454799691653072544041252701, 4.73556571190055223461658466814, 5.30667442258187139649416571842, 5.36077469066162409311095072548, 6.37745555182308308932353118086, 6.95273130391521232708365123988, 8.234609058282839573893145176082

Graph of the $Z$-function along the critical line