Properties

Label 3971.2.a.k.1.7
Level $3971$
Weight $2$
Character 3971.1
Self dual yes
Analytic conductor $31.709$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,2,Mod(1,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3971.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7085946427\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 13x^{7} + 12x^{6} + 51x^{5} - 38x^{4} - 70x^{3} + 30x^{2} + 27x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.23186\) of defining polynomial
Character \(\chi\) \(=\) 3971.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.23186 q^{2} -2.02769 q^{3} -0.482521 q^{4} +2.63096 q^{5} -2.49783 q^{6} +3.75846 q^{7} -3.05812 q^{8} +1.11154 q^{9} +3.24098 q^{10} -1.00000 q^{11} +0.978405 q^{12} -1.64954 q^{13} +4.62989 q^{14} -5.33478 q^{15} -2.80213 q^{16} -1.41204 q^{17} +1.36926 q^{18} -1.26950 q^{20} -7.62099 q^{21} -1.23186 q^{22} -2.42608 q^{23} +6.20092 q^{24} +1.92197 q^{25} -2.03200 q^{26} +3.82922 q^{27} -1.81354 q^{28} +7.21223 q^{29} -6.57171 q^{30} -9.66660 q^{31} +2.66441 q^{32} +2.02769 q^{33} -1.73944 q^{34} +9.88836 q^{35} -0.536340 q^{36} -9.68506 q^{37} +3.34475 q^{39} -8.04580 q^{40} -12.2344 q^{41} -9.38799 q^{42} -5.93610 q^{43} +0.482521 q^{44} +2.92441 q^{45} -2.98859 q^{46} +0.0866633 q^{47} +5.68186 q^{48} +7.12599 q^{49} +2.36759 q^{50} +2.86318 q^{51} +0.795937 q^{52} -1.19879 q^{53} +4.71707 q^{54} -2.63096 q^{55} -11.4938 q^{56} +8.88446 q^{58} -2.72279 q^{59} +2.57415 q^{60} +11.7585 q^{61} -11.9079 q^{62} +4.17766 q^{63} +8.88643 q^{64} -4.33987 q^{65} +2.49783 q^{66} +4.15566 q^{67} +0.681340 q^{68} +4.91935 q^{69} +12.1811 q^{70} +2.63868 q^{71} -3.39921 q^{72} +12.2328 q^{73} -11.9306 q^{74} -3.89716 q^{75} -3.75846 q^{77} +4.12027 q^{78} +3.17735 q^{79} -7.37230 q^{80} -11.0991 q^{81} -15.0711 q^{82} -1.23059 q^{83} +3.67729 q^{84} -3.71503 q^{85} -7.31244 q^{86} -14.6242 q^{87} +3.05812 q^{88} -15.2049 q^{89} +3.60246 q^{90} -6.19971 q^{91} +1.17064 q^{92} +19.6009 q^{93} +0.106757 q^{94} -5.40259 q^{96} -3.32141 q^{97} +8.77823 q^{98} -1.11154 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} + 9 q^{4} + 3 q^{6} - 3 q^{7} + 11 q^{9} - 21 q^{10} - 9 q^{11} + 8 q^{12} - 11 q^{13} - q^{14} - 7 q^{15} + 13 q^{16} - 6 q^{17} - 4 q^{18} + 2 q^{20} - 24 q^{21} + q^{22} + q^{23} + 3 q^{24}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23186 0.871056 0.435528 0.900175i \(-0.356562\pi\)
0.435528 + 0.900175i \(0.356562\pi\)
\(3\) −2.02769 −1.17069 −0.585344 0.810785i \(-0.699041\pi\)
−0.585344 + 0.810785i \(0.699041\pi\)
\(4\) −0.482521 −0.241261
\(5\) 2.63096 1.17660 0.588301 0.808642i \(-0.299797\pi\)
0.588301 + 0.808642i \(0.299797\pi\)
\(6\) −2.49783 −1.01974
\(7\) 3.75846 1.42056 0.710281 0.703918i \(-0.248568\pi\)
0.710281 + 0.703918i \(0.248568\pi\)
\(8\) −3.05812 −1.08121
\(9\) 1.11154 0.370512
\(10\) 3.24098 1.02489
\(11\) −1.00000 −0.301511
\(12\) 0.978405 0.282441
\(13\) −1.64954 −0.457499 −0.228750 0.973485i \(-0.573464\pi\)
−0.228750 + 0.973485i \(0.573464\pi\)
\(14\) 4.62989 1.23739
\(15\) −5.33478 −1.37744
\(16\) −2.80213 −0.700533
\(17\) −1.41204 −0.342470 −0.171235 0.985230i \(-0.554776\pi\)
−0.171235 + 0.985230i \(0.554776\pi\)
\(18\) 1.36926 0.322737
\(19\) 0 0
\(20\) −1.26950 −0.283868
\(21\) −7.62099 −1.66304
\(22\) −1.23186 −0.262633
\(23\) −2.42608 −0.505873 −0.252937 0.967483i \(-0.581396\pi\)
−0.252937 + 0.967483i \(0.581396\pi\)
\(24\) 6.20092 1.26576
\(25\) 1.92197 0.384393
\(26\) −2.03200 −0.398508
\(27\) 3.82922 0.736935
\(28\) −1.81354 −0.342726
\(29\) 7.21223 1.33928 0.669639 0.742687i \(-0.266449\pi\)
0.669639 + 0.742687i \(0.266449\pi\)
\(30\) −6.57171 −1.19982
\(31\) −9.66660 −1.73617 −0.868086 0.496413i \(-0.834650\pi\)
−0.868086 + 0.496413i \(0.834650\pi\)
\(32\) 2.66441 0.471005
\(33\) 2.02769 0.352976
\(34\) −1.73944 −0.298311
\(35\) 9.88836 1.67144
\(36\) −0.536340 −0.0893899
\(37\) −9.68506 −1.59221 −0.796107 0.605156i \(-0.793111\pi\)
−0.796107 + 0.605156i \(0.793111\pi\)
\(38\) 0 0
\(39\) 3.34475 0.535589
\(40\) −8.04580 −1.27215
\(41\) −12.2344 −1.91069 −0.955346 0.295489i \(-0.904517\pi\)
−0.955346 + 0.295489i \(0.904517\pi\)
\(42\) −9.38799 −1.44860
\(43\) −5.93610 −0.905246 −0.452623 0.891702i \(-0.649512\pi\)
−0.452623 + 0.891702i \(0.649512\pi\)
\(44\) 0.482521 0.0727428
\(45\) 2.92441 0.435945
\(46\) −2.98859 −0.440644
\(47\) 0.0866633 0.0126411 0.00632057 0.999980i \(-0.497988\pi\)
0.00632057 + 0.999980i \(0.497988\pi\)
\(48\) 5.68186 0.820106
\(49\) 7.12599 1.01800
\(50\) 2.36759 0.334828
\(51\) 2.86318 0.400926
\(52\) 0.795937 0.110377
\(53\) −1.19879 −0.164666 −0.0823332 0.996605i \(-0.526237\pi\)
−0.0823332 + 0.996605i \(0.526237\pi\)
\(54\) 4.71707 0.641912
\(55\) −2.63096 −0.354759
\(56\) −11.4938 −1.53592
\(57\) 0 0
\(58\) 8.88446 1.16659
\(59\) −2.72279 −0.354478 −0.177239 0.984168i \(-0.556716\pi\)
−0.177239 + 0.984168i \(0.556716\pi\)
\(60\) 2.57415 0.332321
\(61\) 11.7585 1.50552 0.752760 0.658295i \(-0.228722\pi\)
0.752760 + 0.658295i \(0.228722\pi\)
\(62\) −11.9079 −1.51230
\(63\) 4.17766 0.526335
\(64\) 8.88643 1.11080
\(65\) −4.33987 −0.538295
\(66\) 2.49783 0.307462
\(67\) 4.15566 0.507694 0.253847 0.967244i \(-0.418304\pi\)
0.253847 + 0.967244i \(0.418304\pi\)
\(68\) 0.681340 0.0826246
\(69\) 4.91935 0.592220
\(70\) 12.1811 1.45592
\(71\) 2.63868 0.313154 0.156577 0.987666i \(-0.449954\pi\)
0.156577 + 0.987666i \(0.449954\pi\)
\(72\) −3.39921 −0.400600
\(73\) 12.2328 1.43175 0.715873 0.698231i \(-0.246029\pi\)
0.715873 + 0.698231i \(0.246029\pi\)
\(74\) −11.9306 −1.38691
\(75\) −3.89716 −0.450005
\(76\) 0 0
\(77\) −3.75846 −0.428316
\(78\) 4.12027 0.466528
\(79\) 3.17735 0.357480 0.178740 0.983896i \(-0.442798\pi\)
0.178740 + 0.983896i \(0.442798\pi\)
\(80\) −7.37230 −0.824248
\(81\) −11.0991 −1.23323
\(82\) −15.0711 −1.66432
\(83\) −1.23059 −0.135075 −0.0675373 0.997717i \(-0.521514\pi\)
−0.0675373 + 0.997717i \(0.521514\pi\)
\(84\) 3.67729 0.401225
\(85\) −3.71503 −0.402951
\(86\) −7.31244 −0.788521
\(87\) −14.6242 −1.56788
\(88\) 3.05812 0.325997
\(89\) −15.2049 −1.61172 −0.805858 0.592109i \(-0.798295\pi\)
−0.805858 + 0.592109i \(0.798295\pi\)
\(90\) 3.60246 0.379733
\(91\) −6.19971 −0.649907
\(92\) 1.17064 0.122047
\(93\) 19.6009 2.03252
\(94\) 0.106757 0.0110112
\(95\) 0 0
\(96\) −5.40259 −0.551400
\(97\) −3.32141 −0.337238 −0.168619 0.985681i \(-0.553931\pi\)
−0.168619 + 0.985681i \(0.553931\pi\)
\(98\) 8.77823 0.886735
\(99\) −1.11154 −0.111714
\(100\) −0.927390 −0.0927390
\(101\) −3.27090 −0.325467 −0.162733 0.986670i \(-0.552031\pi\)
−0.162733 + 0.986670i \(0.552031\pi\)
\(102\) 3.52704 0.349229
\(103\) −4.53533 −0.446879 −0.223439 0.974718i \(-0.571729\pi\)
−0.223439 + 0.974718i \(0.571729\pi\)
\(104\) 5.04448 0.494652
\(105\) −20.0505 −1.95673
\(106\) −1.47674 −0.143434
\(107\) 4.59920 0.444621 0.222311 0.974976i \(-0.428640\pi\)
0.222311 + 0.974976i \(0.428640\pi\)
\(108\) −1.84768 −0.177793
\(109\) −12.2192 −1.17038 −0.585192 0.810895i \(-0.698981\pi\)
−0.585192 + 0.810895i \(0.698981\pi\)
\(110\) −3.24098 −0.309015
\(111\) 19.6383 1.86399
\(112\) −10.5317 −0.995151
\(113\) 0.758905 0.0713918 0.0356959 0.999363i \(-0.488635\pi\)
0.0356959 + 0.999363i \(0.488635\pi\)
\(114\) 0 0
\(115\) −6.38294 −0.595212
\(116\) −3.48006 −0.323115
\(117\) −1.83352 −0.169509
\(118\) −3.35410 −0.308770
\(119\) −5.30709 −0.486500
\(120\) 16.3144 1.48929
\(121\) 1.00000 0.0909091
\(122\) 14.4848 1.31139
\(123\) 24.8076 2.23683
\(124\) 4.66434 0.418870
\(125\) −8.09819 −0.724324
\(126\) 5.14629 0.458468
\(127\) −1.12935 −0.100214 −0.0501069 0.998744i \(-0.515956\pi\)
−0.0501069 + 0.998744i \(0.515956\pi\)
\(128\) 5.61803 0.496568
\(129\) 12.0366 1.05976
\(130\) −5.34611 −0.468885
\(131\) 2.88213 0.251813 0.125907 0.992042i \(-0.459816\pi\)
0.125907 + 0.992042i \(0.459816\pi\)
\(132\) −0.978405 −0.0851592
\(133\) 0 0
\(134\) 5.11919 0.442231
\(135\) 10.0745 0.867079
\(136\) 4.31819 0.370281
\(137\) −22.7229 −1.94135 −0.970674 0.240398i \(-0.922722\pi\)
−0.970674 + 0.240398i \(0.922722\pi\)
\(138\) 6.05995 0.515857
\(139\) 1.30728 0.110882 0.0554411 0.998462i \(-0.482344\pi\)
0.0554411 + 0.998462i \(0.482344\pi\)
\(140\) −4.77135 −0.403252
\(141\) −0.175727 −0.0147988
\(142\) 3.25049 0.272775
\(143\) 1.64954 0.137941
\(144\) −3.11467 −0.259556
\(145\) 18.9751 1.57580
\(146\) 15.0691 1.24713
\(147\) −14.4493 −1.19176
\(148\) 4.67325 0.384139
\(149\) 5.05721 0.414303 0.207151 0.978309i \(-0.433581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(150\) −4.80075 −0.391980
\(151\) 8.85980 0.721000 0.360500 0.932759i \(-0.382606\pi\)
0.360500 + 0.932759i \(0.382606\pi\)
\(152\) 0 0
\(153\) −1.56953 −0.126889
\(154\) −4.62989 −0.373087
\(155\) −25.4325 −2.04278
\(156\) −1.61392 −0.129217
\(157\) −16.2238 −1.29480 −0.647399 0.762152i \(-0.724143\pi\)
−0.647399 + 0.762152i \(0.724143\pi\)
\(158\) 3.91405 0.311385
\(159\) 2.43078 0.192773
\(160\) 7.00995 0.554185
\(161\) −9.11833 −0.718625
\(162\) −13.6725 −1.07422
\(163\) −21.9299 −1.71769 −0.858843 0.512239i \(-0.828816\pi\)
−0.858843 + 0.512239i \(0.828816\pi\)
\(164\) 5.90336 0.460975
\(165\) 5.33478 0.415312
\(166\) −1.51591 −0.117658
\(167\) −20.7195 −1.60332 −0.801662 0.597777i \(-0.796051\pi\)
−0.801662 + 0.597777i \(0.796051\pi\)
\(168\) 23.3059 1.79809
\(169\) −10.2790 −0.790694
\(170\) −4.57639 −0.350993
\(171\) 0 0
\(172\) 2.86429 0.218400
\(173\) 12.8417 0.976338 0.488169 0.872749i \(-0.337665\pi\)
0.488169 + 0.872749i \(0.337665\pi\)
\(174\) −18.0149 −1.36571
\(175\) 7.22363 0.546055
\(176\) 2.80213 0.211219
\(177\) 5.52099 0.414983
\(178\) −18.7303 −1.40390
\(179\) 0.801793 0.0599288 0.0299644 0.999551i \(-0.490461\pi\)
0.0299644 + 0.999551i \(0.490461\pi\)
\(180\) −1.41109 −0.105176
\(181\) −11.2861 −0.838893 −0.419446 0.907780i \(-0.637776\pi\)
−0.419446 + 0.907780i \(0.637776\pi\)
\(182\) −7.63718 −0.566105
\(183\) −23.8426 −1.76250
\(184\) 7.41925 0.546954
\(185\) −25.4810 −1.87340
\(186\) 24.1455 1.77044
\(187\) 1.41204 0.103259
\(188\) −0.0418169 −0.00304981
\(189\) 14.3920 1.04686
\(190\) 0 0
\(191\) 7.65003 0.553536 0.276768 0.960937i \(-0.410737\pi\)
0.276768 + 0.960937i \(0.410737\pi\)
\(192\) −18.0190 −1.30041
\(193\) 8.91369 0.641621 0.320811 0.947143i \(-0.396045\pi\)
0.320811 + 0.947143i \(0.396045\pi\)
\(194\) −4.09151 −0.293753
\(195\) 8.79992 0.630176
\(196\) −3.43844 −0.245603
\(197\) 2.10950 0.150296 0.0751480 0.997172i \(-0.476057\pi\)
0.0751480 + 0.997172i \(0.476057\pi\)
\(198\) −1.36926 −0.0973088
\(199\) 5.51092 0.390659 0.195329 0.980738i \(-0.437422\pi\)
0.195329 + 0.980738i \(0.437422\pi\)
\(200\) −5.87760 −0.415609
\(201\) −8.42640 −0.594352
\(202\) −4.02929 −0.283500
\(203\) 27.1069 1.90253
\(204\) −1.38155 −0.0967276
\(205\) −32.1883 −2.24812
\(206\) −5.58689 −0.389257
\(207\) −2.69668 −0.187432
\(208\) 4.62222 0.320493
\(209\) 0 0
\(210\) −24.6995 −1.70443
\(211\) −15.9616 −1.09884 −0.549421 0.835546i \(-0.685152\pi\)
−0.549421 + 0.835546i \(0.685152\pi\)
\(212\) 0.578441 0.0397275
\(213\) −5.35043 −0.366606
\(214\) 5.66557 0.387290
\(215\) −15.6177 −1.06512
\(216\) −11.7102 −0.796780
\(217\) −36.3315 −2.46634
\(218\) −15.0523 −1.01947
\(219\) −24.8044 −1.67613
\(220\) 1.26950 0.0855894
\(221\) 2.32921 0.156680
\(222\) 24.1917 1.62364
\(223\) 17.1293 1.14706 0.573531 0.819184i \(-0.305573\pi\)
0.573531 + 0.819184i \(0.305573\pi\)
\(224\) 10.0140 0.669092
\(225\) 2.13633 0.142422
\(226\) 0.934865 0.0621863
\(227\) −22.3328 −1.48228 −0.741142 0.671349i \(-0.765715\pi\)
−0.741142 + 0.671349i \(0.765715\pi\)
\(228\) 0 0
\(229\) −14.9912 −0.990645 −0.495322 0.868709i \(-0.664950\pi\)
−0.495322 + 0.868709i \(0.664950\pi\)
\(230\) −7.86288 −0.518463
\(231\) 7.62099 0.501424
\(232\) −22.0559 −1.44804
\(233\) 1.92394 0.126041 0.0630206 0.998012i \(-0.479927\pi\)
0.0630206 + 0.998012i \(0.479927\pi\)
\(234\) −2.25864 −0.147652
\(235\) 0.228008 0.0148736
\(236\) 1.31381 0.0855215
\(237\) −6.44269 −0.418498
\(238\) −6.53759 −0.423769
\(239\) 3.30029 0.213478 0.106739 0.994287i \(-0.465959\pi\)
0.106739 + 0.994287i \(0.465959\pi\)
\(240\) 14.9488 0.964938
\(241\) −17.1145 −1.10244 −0.551220 0.834360i \(-0.685838\pi\)
−0.551220 + 0.834360i \(0.685838\pi\)
\(242\) 1.23186 0.0791869
\(243\) 11.0179 0.706797
\(244\) −5.67372 −0.363223
\(245\) 18.7482 1.19778
\(246\) 30.5595 1.94840
\(247\) 0 0
\(248\) 29.5616 1.87716
\(249\) 2.49525 0.158130
\(250\) −9.97584 −0.630927
\(251\) 12.8202 0.809204 0.404602 0.914493i \(-0.367410\pi\)
0.404602 + 0.914493i \(0.367410\pi\)
\(252\) −2.01581 −0.126984
\(253\) 2.42608 0.152527
\(254\) −1.39120 −0.0872918
\(255\) 7.53293 0.471730
\(256\) −10.8522 −0.678265
\(257\) 30.6098 1.90938 0.954692 0.297595i \(-0.0961846\pi\)
0.954692 + 0.297595i \(0.0961846\pi\)
\(258\) 14.8274 0.923112
\(259\) −36.4009 −2.26184
\(260\) 2.09408 0.129869
\(261\) 8.01665 0.496218
\(262\) 3.55038 0.219343
\(263\) −27.8774 −1.71900 −0.859498 0.511138i \(-0.829224\pi\)
−0.859498 + 0.511138i \(0.829224\pi\)
\(264\) −6.20092 −0.381640
\(265\) −3.15397 −0.193747
\(266\) 0 0
\(267\) 30.8308 1.88682
\(268\) −2.00519 −0.122487
\(269\) −1.55773 −0.0949766 −0.0474883 0.998872i \(-0.515122\pi\)
−0.0474883 + 0.998872i \(0.515122\pi\)
\(270\) 12.4104 0.755275
\(271\) −6.01455 −0.365358 −0.182679 0.983173i \(-0.558477\pi\)
−0.182679 + 0.983173i \(0.558477\pi\)
\(272\) 3.95672 0.239911
\(273\) 12.5711 0.760838
\(274\) −27.9914 −1.69102
\(275\) −1.92197 −0.115899
\(276\) −2.37369 −0.142879
\(277\) −16.1061 −0.967724 −0.483862 0.875144i \(-0.660766\pi\)
−0.483862 + 0.875144i \(0.660766\pi\)
\(278\) 1.61039 0.0965846
\(279\) −10.7448 −0.643272
\(280\) −30.2398 −1.80717
\(281\) 20.3244 1.21245 0.606226 0.795292i \(-0.292683\pi\)
0.606226 + 0.795292i \(0.292683\pi\)
\(282\) −0.216470 −0.0128906
\(283\) 21.7917 1.29538 0.647692 0.761902i \(-0.275734\pi\)
0.647692 + 0.761902i \(0.275734\pi\)
\(284\) −1.27322 −0.0755517
\(285\) 0 0
\(286\) 2.03200 0.120155
\(287\) −45.9825 −2.71426
\(288\) 2.96158 0.174513
\(289\) −15.0061 −0.882714
\(290\) 23.3747 1.37261
\(291\) 6.73480 0.394801
\(292\) −5.90261 −0.345424
\(293\) −1.41230 −0.0825073 −0.0412537 0.999149i \(-0.513135\pi\)
−0.0412537 + 0.999149i \(0.513135\pi\)
\(294\) −17.7995 −1.03809
\(295\) −7.16357 −0.417079
\(296\) 29.6181 1.72151
\(297\) −3.82922 −0.222194
\(298\) 6.22977 0.360881
\(299\) 4.00192 0.231437
\(300\) 1.88046 0.108569
\(301\) −22.3106 −1.28596
\(302\) 10.9140 0.628032
\(303\) 6.63237 0.381020
\(304\) 0 0
\(305\) 30.9361 1.77140
\(306\) −1.93344 −0.110528
\(307\) 28.8495 1.64653 0.823264 0.567659i \(-0.192151\pi\)
0.823264 + 0.567659i \(0.192151\pi\)
\(308\) 1.81354 0.103336
\(309\) 9.19624 0.523156
\(310\) −31.3292 −1.77938
\(311\) −14.9369 −0.846994 −0.423497 0.905897i \(-0.639198\pi\)
−0.423497 + 0.905897i \(0.639198\pi\)
\(312\) −10.2287 −0.579083
\(313\) 24.3231 1.37482 0.687411 0.726269i \(-0.258747\pi\)
0.687411 + 0.726269i \(0.258747\pi\)
\(314\) −19.9854 −1.12784
\(315\) 10.9913 0.619288
\(316\) −1.53314 −0.0862459
\(317\) −17.8218 −1.00097 −0.500486 0.865745i \(-0.666845\pi\)
−0.500486 + 0.865745i \(0.666845\pi\)
\(318\) 2.99437 0.167916
\(319\) −7.21223 −0.403807
\(320\) 23.3799 1.30698
\(321\) −9.32576 −0.520513
\(322\) −11.2325 −0.625963
\(323\) 0 0
\(324\) 5.35555 0.297531
\(325\) −3.17036 −0.175860
\(326\) −27.0146 −1.49620
\(327\) 24.7767 1.37016
\(328\) 37.4142 2.06586
\(329\) 0.325720 0.0179575
\(330\) 6.57171 0.361760
\(331\) 18.2121 1.00103 0.500513 0.865729i \(-0.333145\pi\)
0.500513 + 0.865729i \(0.333145\pi\)
\(332\) 0.593785 0.0325882
\(333\) −10.7653 −0.589934
\(334\) −25.5235 −1.39659
\(335\) 10.9334 0.597355
\(336\) 21.3550 1.16501
\(337\) −28.0190 −1.52629 −0.763147 0.646224i \(-0.776347\pi\)
−0.763147 + 0.646224i \(0.776347\pi\)
\(338\) −12.6623 −0.688739
\(339\) −1.53883 −0.0835776
\(340\) 1.79258 0.0972163
\(341\) 9.66660 0.523476
\(342\) 0 0
\(343\) 0.473542 0.0255689
\(344\) 18.1533 0.978760
\(345\) 12.9426 0.696808
\(346\) 15.8192 0.850446
\(347\) 28.3630 1.52261 0.761303 0.648396i \(-0.224560\pi\)
0.761303 + 0.648396i \(0.224560\pi\)
\(348\) 7.05648 0.378267
\(349\) −4.77221 −0.255451 −0.127725 0.991810i \(-0.540768\pi\)
−0.127725 + 0.991810i \(0.540768\pi\)
\(350\) 8.89850 0.475645
\(351\) −6.31645 −0.337147
\(352\) −2.66441 −0.142013
\(353\) −12.6727 −0.674498 −0.337249 0.941415i \(-0.609497\pi\)
−0.337249 + 0.941415i \(0.609497\pi\)
\(354\) 6.80108 0.361473
\(355\) 6.94227 0.368458
\(356\) 7.33669 0.388844
\(357\) 10.7611 0.569540
\(358\) 0.987696 0.0522014
\(359\) 1.24822 0.0658783 0.0329391 0.999457i \(-0.489513\pi\)
0.0329391 + 0.999457i \(0.489513\pi\)
\(360\) −8.94319 −0.471347
\(361\) 0 0
\(362\) −13.9030 −0.730723
\(363\) −2.02769 −0.106426
\(364\) 2.99149 0.156797
\(365\) 32.1841 1.68460
\(366\) −29.3707 −1.53523
\(367\) −33.9164 −1.77042 −0.885212 0.465188i \(-0.845987\pi\)
−0.885212 + 0.465188i \(0.845987\pi\)
\(368\) 6.79820 0.354381
\(369\) −13.5990 −0.707934
\(370\) −31.3891 −1.63184
\(371\) −4.50560 −0.233919
\(372\) −9.45785 −0.490367
\(373\) −10.3937 −0.538167 −0.269083 0.963117i \(-0.586721\pi\)
−0.269083 + 0.963117i \(0.586721\pi\)
\(374\) 1.73944 0.0899441
\(375\) 16.4206 0.847958
\(376\) −0.265027 −0.0136677
\(377\) −11.8968 −0.612719
\(378\) 17.7289 0.911876
\(379\) −0.456731 −0.0234607 −0.0117303 0.999931i \(-0.503734\pi\)
−0.0117303 + 0.999931i \(0.503734\pi\)
\(380\) 0 0
\(381\) 2.28998 0.117319
\(382\) 9.42376 0.482161
\(383\) 21.0486 1.07554 0.537768 0.843093i \(-0.319268\pi\)
0.537768 + 0.843093i \(0.319268\pi\)
\(384\) −11.3916 −0.581327
\(385\) −9.88836 −0.503957
\(386\) 10.9804 0.558888
\(387\) −6.59818 −0.335405
\(388\) 1.60265 0.0813623
\(389\) −6.06998 −0.307760 −0.153880 0.988090i \(-0.549177\pi\)
−0.153880 + 0.988090i \(0.549177\pi\)
\(390\) 10.8403 0.548919
\(391\) 3.42573 0.173246
\(392\) −21.7921 −1.10067
\(393\) −5.84408 −0.294795
\(394\) 2.59861 0.130916
\(395\) 8.35949 0.420612
\(396\) 0.536340 0.0269521
\(397\) 19.8293 0.995203 0.497601 0.867406i \(-0.334214\pi\)
0.497601 + 0.867406i \(0.334214\pi\)
\(398\) 6.78868 0.340286
\(399\) 0 0
\(400\) −5.38560 −0.269280
\(401\) −18.8701 −0.942326 −0.471163 0.882046i \(-0.656166\pi\)
−0.471163 + 0.882046i \(0.656166\pi\)
\(402\) −10.3801 −0.517714
\(403\) 15.9454 0.794298
\(404\) 1.57828 0.0785223
\(405\) −29.2013 −1.45102
\(406\) 33.3918 1.65721
\(407\) 9.68506 0.480071
\(408\) −8.75595 −0.433484
\(409\) 32.6139 1.61266 0.806328 0.591469i \(-0.201452\pi\)
0.806328 + 0.591469i \(0.201452\pi\)
\(410\) −39.6514 −1.95824
\(411\) 46.0751 2.27271
\(412\) 2.18839 0.107814
\(413\) −10.2335 −0.503558
\(414\) −3.32193 −0.163264
\(415\) −3.23763 −0.158929
\(416\) −4.39504 −0.215484
\(417\) −2.65076 −0.129808
\(418\) 0 0
\(419\) −39.3439 −1.92208 −0.961039 0.276414i \(-0.910854\pi\)
−0.961039 + 0.276414i \(0.910854\pi\)
\(420\) 9.67482 0.472083
\(421\) 0.604068 0.0294404 0.0147202 0.999892i \(-0.495314\pi\)
0.0147202 + 0.999892i \(0.495314\pi\)
\(422\) −19.6625 −0.957153
\(423\) 0.0963294 0.00468369
\(424\) 3.66604 0.178039
\(425\) −2.71389 −0.131643
\(426\) −6.59099 −0.319334
\(427\) 44.1938 2.13869
\(428\) −2.21921 −0.107270
\(429\) −3.34475 −0.161486
\(430\) −19.2388 −0.927775
\(431\) −14.1289 −0.680564 −0.340282 0.940323i \(-0.610523\pi\)
−0.340282 + 0.940323i \(0.610523\pi\)
\(432\) −10.7300 −0.516247
\(433\) −18.8905 −0.907819 −0.453909 0.891048i \(-0.649971\pi\)
−0.453909 + 0.891048i \(0.649971\pi\)
\(434\) −44.7553 −2.14832
\(435\) −38.4757 −1.84477
\(436\) 5.89601 0.282368
\(437\) 0 0
\(438\) −30.5556 −1.46000
\(439\) 34.8446 1.66304 0.831521 0.555494i \(-0.187471\pi\)
0.831521 + 0.555494i \(0.187471\pi\)
\(440\) 8.04580 0.383568
\(441\) 7.92080 0.377181
\(442\) 2.86926 0.136477
\(443\) −4.42545 −0.210259 −0.105130 0.994459i \(-0.533526\pi\)
−0.105130 + 0.994459i \(0.533526\pi\)
\(444\) −9.47591 −0.449707
\(445\) −40.0035 −1.89635
\(446\) 21.1009 0.999155
\(447\) −10.2545 −0.485020
\(448\) 33.3993 1.57797
\(449\) 27.5536 1.30033 0.650166 0.759792i \(-0.274699\pi\)
0.650166 + 0.759792i \(0.274699\pi\)
\(450\) 2.63166 0.124058
\(451\) 12.2344 0.576095
\(452\) −0.366188 −0.0172240
\(453\) −17.9649 −0.844067
\(454\) −27.5109 −1.29115
\(455\) −16.3112 −0.764682
\(456\) 0 0
\(457\) 30.7875 1.44018 0.720089 0.693881i \(-0.244101\pi\)
0.720089 + 0.693881i \(0.244101\pi\)
\(458\) −18.4670 −0.862907
\(459\) −5.40702 −0.252378
\(460\) 3.07990 0.143601
\(461\) −24.7022 −1.15050 −0.575248 0.817979i \(-0.695094\pi\)
−0.575248 + 0.817979i \(0.695094\pi\)
\(462\) 9.38799 0.436769
\(463\) 13.4674 0.625885 0.312942 0.949772i \(-0.398685\pi\)
0.312942 + 0.949772i \(0.398685\pi\)
\(464\) −20.2096 −0.938208
\(465\) 51.5692 2.39146
\(466\) 2.37002 0.109789
\(467\) 23.5735 1.09085 0.545425 0.838159i \(-0.316368\pi\)
0.545425 + 0.838159i \(0.316368\pi\)
\(468\) 0.884712 0.0408958
\(469\) 15.6189 0.721212
\(470\) 0.280874 0.0129557
\(471\) 32.8968 1.51580
\(472\) 8.32663 0.383264
\(473\) 5.93610 0.272942
\(474\) −7.93649 −0.364535
\(475\) 0 0
\(476\) 2.56079 0.117373
\(477\) −1.33250 −0.0610108
\(478\) 4.06550 0.185951
\(479\) 18.5653 0.848269 0.424135 0.905599i \(-0.360578\pi\)
0.424135 + 0.905599i \(0.360578\pi\)
\(480\) −14.2140 −0.648778
\(481\) 15.9759 0.728437
\(482\) −21.0826 −0.960288
\(483\) 18.4892 0.841286
\(484\) −0.482521 −0.0219328
\(485\) −8.73851 −0.396795
\(486\) 13.5725 0.615660
\(487\) 1.97914 0.0896835 0.0448417 0.998994i \(-0.485722\pi\)
0.0448417 + 0.998994i \(0.485722\pi\)
\(488\) −35.9588 −1.62778
\(489\) 44.4672 2.01087
\(490\) 23.0952 1.04333
\(491\) 21.2152 0.957431 0.478715 0.877970i \(-0.341103\pi\)
0.478715 + 0.877970i \(0.341103\pi\)
\(492\) −11.9702 −0.539658
\(493\) −10.1840 −0.458663
\(494\) 0 0
\(495\) −2.92441 −0.131442
\(496\) 27.0871 1.21625
\(497\) 9.91737 0.444855
\(498\) 3.07380 0.137740
\(499\) 25.1247 1.12474 0.562368 0.826887i \(-0.309891\pi\)
0.562368 + 0.826887i \(0.309891\pi\)
\(500\) 3.90755 0.174751
\(501\) 42.0128 1.87699
\(502\) 15.7927 0.704862
\(503\) −7.28460 −0.324804 −0.162402 0.986725i \(-0.551924\pi\)
−0.162402 + 0.986725i \(0.551924\pi\)
\(504\) −12.7758 −0.569078
\(505\) −8.60561 −0.382945
\(506\) 2.98859 0.132859
\(507\) 20.8427 0.925657
\(508\) 0.544936 0.0241776
\(509\) 30.3845 1.34677 0.673385 0.739292i \(-0.264840\pi\)
0.673385 + 0.739292i \(0.264840\pi\)
\(510\) 9.27951 0.410904
\(511\) 45.9766 2.03388
\(512\) −24.6045 −1.08738
\(513\) 0 0
\(514\) 37.7069 1.66318
\(515\) −11.9323 −0.525799
\(516\) −5.80791 −0.255679
\(517\) −0.0866633 −0.00381145
\(518\) −44.8408 −1.97019
\(519\) −26.0391 −1.14299
\(520\) 13.2718 0.582009
\(521\) −8.26667 −0.362169 −0.181085 0.983468i \(-0.557961\pi\)
−0.181085 + 0.983468i \(0.557961\pi\)
\(522\) 9.87539 0.432234
\(523\) −15.4759 −0.676714 −0.338357 0.941018i \(-0.609871\pi\)
−0.338357 + 0.941018i \(0.609871\pi\)
\(524\) −1.39069 −0.0607526
\(525\) −14.6473 −0.639260
\(526\) −34.3411 −1.49734
\(527\) 13.6496 0.594587
\(528\) −5.68186 −0.247271
\(529\) −17.1141 −0.744092
\(530\) −3.88525 −0.168764
\(531\) −3.02648 −0.131338
\(532\) 0 0
\(533\) 20.1811 0.874140
\(534\) 37.9793 1.64352
\(535\) 12.1003 0.523143
\(536\) −12.7085 −0.548923
\(537\) −1.62579 −0.0701580
\(538\) −1.91891 −0.0827300
\(539\) −7.12599 −0.306938
\(540\) −4.86119 −0.209192
\(541\) 13.3661 0.574656 0.287328 0.957832i \(-0.407233\pi\)
0.287328 + 0.957832i \(0.407233\pi\)
\(542\) −7.40908 −0.318247
\(543\) 22.8848 0.982082
\(544\) −3.76225 −0.161305
\(545\) −32.1482 −1.37708
\(546\) 15.4858 0.662733
\(547\) 2.95631 0.126403 0.0632013 0.998001i \(-0.479869\pi\)
0.0632013 + 0.998001i \(0.479869\pi\)
\(548\) 10.9643 0.468371
\(549\) 13.0700 0.557813
\(550\) −2.36759 −0.100955
\(551\) 0 0
\(552\) −15.0440 −0.640313
\(553\) 11.9419 0.507823
\(554\) −19.8405 −0.842942
\(555\) 51.6677 2.19317
\(556\) −0.630791 −0.0267515
\(557\) 11.8388 0.501626 0.250813 0.968036i \(-0.419302\pi\)
0.250813 + 0.968036i \(0.419302\pi\)
\(558\) −13.2360 −0.560327
\(559\) 9.79181 0.414150
\(560\) −27.7085 −1.17090
\(561\) −2.86318 −0.120884
\(562\) 25.0368 1.05611
\(563\) 1.82512 0.0769194 0.0384597 0.999260i \(-0.487755\pi\)
0.0384597 + 0.999260i \(0.487755\pi\)
\(564\) 0.0847918 0.00357038
\(565\) 1.99665 0.0839998
\(566\) 26.8444 1.12835
\(567\) −41.7155 −1.75188
\(568\) −8.06940 −0.338585
\(569\) −16.0290 −0.671971 −0.335986 0.941867i \(-0.609069\pi\)
−0.335986 + 0.941867i \(0.609069\pi\)
\(570\) 0 0
\(571\) 27.4663 1.14943 0.574714 0.818355i \(-0.305113\pi\)
0.574714 + 0.818355i \(0.305113\pi\)
\(572\) −0.795937 −0.0332798
\(573\) −15.5119 −0.648019
\(574\) −56.6439 −2.36427
\(575\) −4.66285 −0.194454
\(576\) 9.87759 0.411566
\(577\) 19.2841 0.802809 0.401405 0.915901i \(-0.368522\pi\)
0.401405 + 0.915901i \(0.368522\pi\)
\(578\) −18.4855 −0.768894
\(579\) −18.0742 −0.751139
\(580\) −9.15590 −0.380178
\(581\) −4.62511 −0.191882
\(582\) 8.29633 0.343894
\(583\) 1.19879 0.0496488
\(584\) −37.4095 −1.54801
\(585\) −4.82392 −0.199445
\(586\) −1.73975 −0.0718685
\(587\) −24.4297 −1.00832 −0.504160 0.863610i \(-0.668198\pi\)
−0.504160 + 0.863610i \(0.668198\pi\)
\(588\) 6.97211 0.287525
\(589\) 0 0
\(590\) −8.82451 −0.363299
\(591\) −4.27742 −0.175950
\(592\) 27.1388 1.11540
\(593\) 1.44069 0.0591620 0.0295810 0.999562i \(-0.490583\pi\)
0.0295810 + 0.999562i \(0.490583\pi\)
\(594\) −4.71707 −0.193544
\(595\) −13.9628 −0.572417
\(596\) −2.44021 −0.0999550
\(597\) −11.1745 −0.457340
\(598\) 4.92980 0.201594
\(599\) 29.4218 1.20214 0.601072 0.799195i \(-0.294741\pi\)
0.601072 + 0.799195i \(0.294741\pi\)
\(600\) 11.9180 0.486549
\(601\) −32.4389 −1.32321 −0.661605 0.749853i \(-0.730124\pi\)
−0.661605 + 0.749853i \(0.730124\pi\)
\(602\) −27.4835 −1.12014
\(603\) 4.61916 0.188107
\(604\) −4.27504 −0.173949
\(605\) 2.63096 0.106964
\(606\) 8.17016 0.331890
\(607\) 29.3851 1.19270 0.596352 0.802723i \(-0.296616\pi\)
0.596352 + 0.802723i \(0.296616\pi\)
\(608\) 0 0
\(609\) −54.9644 −2.22727
\(610\) 38.1090 1.54299
\(611\) −0.142954 −0.00578332
\(612\) 0.757333 0.0306134
\(613\) −20.8384 −0.841654 −0.420827 0.907141i \(-0.638260\pi\)
−0.420827 + 0.907141i \(0.638260\pi\)
\(614\) 35.5385 1.43422
\(615\) 65.2679 2.63185
\(616\) 11.4938 0.463099
\(617\) −32.3392 −1.30193 −0.650963 0.759109i \(-0.725635\pi\)
−0.650963 + 0.759109i \(0.725635\pi\)
\(618\) 11.3285 0.455698
\(619\) 32.8773 1.32145 0.660725 0.750628i \(-0.270249\pi\)
0.660725 + 0.750628i \(0.270249\pi\)
\(620\) 12.2717 0.492844
\(621\) −9.29002 −0.372796
\(622\) −18.4002 −0.737780
\(623\) −57.1469 −2.28954
\(624\) −9.37244 −0.375198
\(625\) −30.9159 −1.23664
\(626\) 29.9626 1.19755
\(627\) 0 0
\(628\) 7.82831 0.312384
\(629\) 13.6757 0.545286
\(630\) 13.5397 0.539434
\(631\) −27.3515 −1.08884 −0.544422 0.838811i \(-0.683251\pi\)
−0.544422 + 0.838811i \(0.683251\pi\)
\(632\) −9.71672 −0.386510
\(633\) 32.3652 1.28640
\(634\) −21.9540 −0.871903
\(635\) −2.97128 −0.117912
\(636\) −1.17290 −0.0465086
\(637\) −11.7546 −0.465734
\(638\) −8.88446 −0.351739
\(639\) 2.93299 0.116027
\(640\) 14.7808 0.584264
\(641\) 46.3007 1.82877 0.914383 0.404850i \(-0.132676\pi\)
0.914383 + 0.404850i \(0.132676\pi\)
\(642\) −11.4880 −0.453396
\(643\) 20.7368 0.817780 0.408890 0.912584i \(-0.365916\pi\)
0.408890 + 0.912584i \(0.365916\pi\)
\(644\) 4.39979 0.173376
\(645\) 31.6678 1.24692
\(646\) 0 0
\(647\) 48.7337 1.91592 0.957959 0.286904i \(-0.0926262\pi\)
0.957959 + 0.286904i \(0.0926262\pi\)
\(648\) 33.9423 1.33338
\(649\) 2.72279 0.106879
\(650\) −3.90543 −0.153184
\(651\) 73.6691 2.88732
\(652\) 10.5817 0.414410
\(653\) −33.5147 −1.31153 −0.655765 0.754965i \(-0.727654\pi\)
−0.655765 + 0.754965i \(0.727654\pi\)
\(654\) 30.5214 1.19348
\(655\) 7.58279 0.296284
\(656\) 34.2824 1.33850
\(657\) 13.5972 0.530479
\(658\) 0.401242 0.0156420
\(659\) 22.3567 0.870892 0.435446 0.900215i \(-0.356591\pi\)
0.435446 + 0.900215i \(0.356591\pi\)
\(660\) −2.57415 −0.100199
\(661\) −17.1035 −0.665249 −0.332625 0.943059i \(-0.607934\pi\)
−0.332625 + 0.943059i \(0.607934\pi\)
\(662\) 22.4347 0.871950
\(663\) −4.72293 −0.183423
\(664\) 3.76329 0.146044
\(665\) 0 0
\(666\) −13.2613 −0.513866
\(667\) −17.4975 −0.677505
\(668\) 9.99761 0.386819
\(669\) −34.7329 −1.34285
\(670\) 13.4684 0.520330
\(671\) −11.7585 −0.453931
\(672\) −20.3054 −0.783298
\(673\) 14.4175 0.555752 0.277876 0.960617i \(-0.410370\pi\)
0.277876 + 0.960617i \(0.410370\pi\)
\(674\) −34.5155 −1.32949
\(675\) 7.35964 0.283273
\(676\) 4.95985 0.190763
\(677\) 26.4020 1.01471 0.507355 0.861737i \(-0.330623\pi\)
0.507355 + 0.861737i \(0.330623\pi\)
\(678\) −1.89562 −0.0728008
\(679\) −12.4834 −0.479068
\(680\) 11.3610 0.435674
\(681\) 45.2841 1.73529
\(682\) 11.9079 0.455977
\(683\) 7.65175 0.292786 0.146393 0.989226i \(-0.453234\pi\)
0.146393 + 0.989226i \(0.453234\pi\)
\(684\) 0 0
\(685\) −59.7831 −2.28420
\(686\) 0.583337 0.0222719
\(687\) 30.3975 1.15974
\(688\) 16.6337 0.634155
\(689\) 1.97745 0.0753348
\(690\) 15.9435 0.606959
\(691\) −4.11843 −0.156672 −0.0783362 0.996927i \(-0.524961\pi\)
−0.0783362 + 0.996927i \(0.524961\pi\)
\(692\) −6.19641 −0.235552
\(693\) −4.17766 −0.158696
\(694\) 34.9392 1.32628
\(695\) 3.43941 0.130464
\(696\) 44.7225 1.69520
\(697\) 17.2755 0.654355
\(698\) −5.87870 −0.222512
\(699\) −3.90115 −0.147555
\(700\) −3.48556 −0.131742
\(701\) −3.49943 −0.132172 −0.0660858 0.997814i \(-0.521051\pi\)
−0.0660858 + 0.997814i \(0.521051\pi\)
\(702\) −7.78098 −0.293674
\(703\) 0 0
\(704\) −8.88643 −0.334920
\(705\) −0.462330 −0.0174124
\(706\) −15.6110 −0.587526
\(707\) −12.2935 −0.462346
\(708\) −2.66399 −0.100119
\(709\) 19.3216 0.725638 0.362819 0.931860i \(-0.381814\pi\)
0.362819 + 0.931860i \(0.381814\pi\)
\(710\) 8.55191 0.320947
\(711\) 3.53174 0.132451
\(712\) 46.4984 1.74260
\(713\) 23.4520 0.878283
\(714\) 13.2562 0.496102
\(715\) 4.33987 0.162302
\(716\) −0.386882 −0.0144585
\(717\) −6.69197 −0.249916
\(718\) 1.53763 0.0573837
\(719\) 7.62027 0.284188 0.142094 0.989853i \(-0.454616\pi\)
0.142094 + 0.989853i \(0.454616\pi\)
\(720\) −8.19457 −0.305394
\(721\) −17.0458 −0.634820
\(722\) 0 0
\(723\) 34.7029 1.29061
\(724\) 5.44581 0.202392
\(725\) 13.8617 0.514810
\(726\) −2.49783 −0.0927033
\(727\) −7.45853 −0.276622 −0.138311 0.990389i \(-0.544167\pi\)
−0.138311 + 0.990389i \(0.544167\pi\)
\(728\) 18.9595 0.702684
\(729\) 10.9564 0.405794
\(730\) 39.6464 1.46738
\(731\) 8.38201 0.310020
\(732\) 11.5046 0.425221
\(733\) 25.8079 0.953237 0.476618 0.879110i \(-0.341862\pi\)
0.476618 + 0.879110i \(0.341862\pi\)
\(734\) −41.7803 −1.54214
\(735\) −38.0156 −1.40223
\(736\) −6.46407 −0.238269
\(737\) −4.15566 −0.153076
\(738\) −16.7520 −0.616650
\(739\) −18.2186 −0.670180 −0.335090 0.942186i \(-0.608767\pi\)
−0.335090 + 0.942186i \(0.608767\pi\)
\(740\) 12.2951 0.451978
\(741\) 0 0
\(742\) −5.55026 −0.203757
\(743\) 27.2606 1.00009 0.500047 0.865998i \(-0.333316\pi\)
0.500047 + 0.865998i \(0.333316\pi\)
\(744\) −59.9418 −2.19757
\(745\) 13.3053 0.487470
\(746\) −12.8036 −0.468774
\(747\) −1.36784 −0.0500468
\(748\) −0.681340 −0.0249122
\(749\) 17.2859 0.631613
\(750\) 20.2279 0.738619
\(751\) 11.8776 0.433422 0.216711 0.976236i \(-0.430467\pi\)
0.216711 + 0.976236i \(0.430467\pi\)
\(752\) −0.242842 −0.00885553
\(753\) −25.9954 −0.947326
\(754\) −14.6552 −0.533713
\(755\) 23.3098 0.848330
\(756\) −6.94444 −0.252567
\(757\) −23.4833 −0.853516 −0.426758 0.904366i \(-0.640344\pi\)
−0.426758 + 0.904366i \(0.640344\pi\)
\(758\) −0.562628 −0.0204356
\(759\) −4.91935 −0.178561
\(760\) 0 0
\(761\) −13.7958 −0.500097 −0.250049 0.968233i \(-0.580447\pi\)
−0.250049 + 0.968233i \(0.580447\pi\)
\(762\) 2.82093 0.102192
\(763\) −45.9252 −1.66260
\(764\) −3.69130 −0.133547
\(765\) −4.12938 −0.149298
\(766\) 25.9290 0.936852
\(767\) 4.49135 0.162173
\(768\) 22.0050 0.794037
\(769\) 35.9440 1.29617 0.648087 0.761566i \(-0.275569\pi\)
0.648087 + 0.761566i \(0.275569\pi\)
\(770\) −12.1811 −0.438975
\(771\) −62.0672 −2.23529
\(772\) −4.30105 −0.154798
\(773\) −26.7394 −0.961749 −0.480874 0.876789i \(-0.659681\pi\)
−0.480874 + 0.876789i \(0.659681\pi\)
\(774\) −8.12804 −0.292156
\(775\) −18.5789 −0.667373
\(776\) 10.1573 0.364625
\(777\) 73.8098 2.64791
\(778\) −7.47737 −0.268077
\(779\) 0 0
\(780\) −4.24615 −0.152037
\(781\) −2.63868 −0.0944195
\(782\) 4.22002 0.150907
\(783\) 27.6173 0.986960
\(784\) −19.9680 −0.713142
\(785\) −42.6841 −1.52346
\(786\) −7.19909 −0.256783
\(787\) −2.46597 −0.0879022 −0.0439511 0.999034i \(-0.513995\pi\)
−0.0439511 + 0.999034i \(0.513995\pi\)
\(788\) −1.01788 −0.0362605
\(789\) 56.5269 2.01241
\(790\) 10.2977 0.366377
\(791\) 2.85231 0.101417
\(792\) 3.39921 0.120786
\(793\) −19.3961 −0.688774
\(794\) 24.4269 0.866878
\(795\) 6.39528 0.226817
\(796\) −2.65914 −0.0942507
\(797\) 22.0167 0.779871 0.389936 0.920842i \(-0.372497\pi\)
0.389936 + 0.920842i \(0.372497\pi\)
\(798\) 0 0
\(799\) −0.122372 −0.00432921
\(800\) 5.12090 0.181051
\(801\) −16.9008 −0.597160
\(802\) −23.2453 −0.820819
\(803\) −12.2328 −0.431687
\(804\) 4.06592 0.143394
\(805\) −23.9900 −0.845536
\(806\) 19.6425 0.691878
\(807\) 3.15860 0.111188
\(808\) 10.0028 0.351897
\(809\) 45.5853 1.60269 0.801347 0.598200i \(-0.204117\pi\)
0.801347 + 0.598200i \(0.204117\pi\)
\(810\) −35.9719 −1.26392
\(811\) −36.6835 −1.28813 −0.644067 0.764969i \(-0.722754\pi\)
−0.644067 + 0.764969i \(0.722754\pi\)
\(812\) −13.0796 −0.459005
\(813\) 12.1957 0.427720
\(814\) 11.9306 0.418169
\(815\) −57.6969 −2.02103
\(816\) −8.02301 −0.280862
\(817\) 0 0
\(818\) 40.1758 1.40471
\(819\) −6.89120 −0.240798
\(820\) 15.5315 0.542384
\(821\) 13.2959 0.464030 0.232015 0.972712i \(-0.425468\pi\)
0.232015 + 0.972712i \(0.425468\pi\)
\(822\) 56.7580 1.97966
\(823\) 28.2027 0.983084 0.491542 0.870854i \(-0.336433\pi\)
0.491542 + 0.870854i \(0.336433\pi\)
\(824\) 13.8696 0.483169
\(825\) 3.89716 0.135682
\(826\) −12.6062 −0.438627
\(827\) 19.8716 0.691004 0.345502 0.938418i \(-0.387709\pi\)
0.345502 + 0.938418i \(0.387709\pi\)
\(828\) 1.30120 0.0452200
\(829\) −32.7421 −1.13718 −0.568589 0.822622i \(-0.692511\pi\)
−0.568589 + 0.822622i \(0.692511\pi\)
\(830\) −3.98831 −0.138436
\(831\) 32.6583 1.13290
\(832\) −14.6585 −0.508192
\(833\) −10.0622 −0.348634
\(834\) −3.26537 −0.113070
\(835\) −54.5123 −1.88648
\(836\) 0 0
\(837\) −37.0156 −1.27945
\(838\) −48.4662 −1.67424
\(839\) 32.5156 1.12256 0.561281 0.827625i \(-0.310309\pi\)
0.561281 + 0.827625i \(0.310309\pi\)
\(840\) 61.3170 2.11564
\(841\) 23.0163 0.793665
\(842\) 0.744126 0.0256443
\(843\) −41.2116 −1.41940
\(844\) 7.70181 0.265107
\(845\) −27.0437 −0.930333
\(846\) 0.118664 0.00407976
\(847\) 3.75846 0.129142
\(848\) 3.35916 0.115354
\(849\) −44.1869 −1.51649
\(850\) −3.34314 −0.114669
\(851\) 23.4968 0.805459
\(852\) 2.58170 0.0884476
\(853\) −27.1348 −0.929078 −0.464539 0.885553i \(-0.653780\pi\)
−0.464539 + 0.885553i \(0.653780\pi\)
\(854\) 54.4405 1.86292
\(855\) 0 0
\(856\) −14.0649 −0.480728
\(857\) −21.7163 −0.741815 −0.370908 0.928670i \(-0.620953\pi\)
−0.370908 + 0.928670i \(0.620953\pi\)
\(858\) −4.12027 −0.140664
\(859\) −57.1926 −1.95139 −0.975693 0.219142i \(-0.929674\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(860\) 7.53585 0.256970
\(861\) 93.2383 3.17755
\(862\) −17.4048 −0.592810
\(863\) 31.7815 1.08186 0.540928 0.841069i \(-0.318073\pi\)
0.540928 + 0.841069i \(0.318073\pi\)
\(864\) 10.2026 0.347100
\(865\) 33.7861 1.14876
\(866\) −23.2704 −0.790761
\(867\) 30.4278 1.03338
\(868\) 17.5307 0.595031
\(869\) −3.17735 −0.107784
\(870\) −47.3967 −1.60690
\(871\) −6.85491 −0.232270
\(872\) 37.3677 1.26543
\(873\) −3.69187 −0.124951
\(874\) 0 0
\(875\) −30.4367 −1.02895
\(876\) 11.9687 0.404384
\(877\) −8.57500 −0.289557 −0.144779 0.989464i \(-0.546247\pi\)
−0.144779 + 0.989464i \(0.546247\pi\)
\(878\) 42.9237 1.44860
\(879\) 2.86371 0.0965904
\(880\) 7.37230 0.248520
\(881\) −46.1073 −1.55339 −0.776697 0.629874i \(-0.783106\pi\)
−0.776697 + 0.629874i \(0.783106\pi\)
\(882\) 9.75731 0.328546
\(883\) −30.5954 −1.02962 −0.514809 0.857305i \(-0.672137\pi\)
−0.514809 + 0.857305i \(0.672137\pi\)
\(884\) −1.12390 −0.0378007
\(885\) 14.5255 0.488270
\(886\) −5.45153 −0.183148
\(887\) 37.5358 1.26033 0.630164 0.776462i \(-0.282988\pi\)
0.630164 + 0.776462i \(0.282988\pi\)
\(888\) −60.0563 −2.01536
\(889\) −4.24462 −0.142360
\(890\) −49.2787 −1.65183
\(891\) 11.0991 0.371834
\(892\) −8.26524 −0.276741
\(893\) 0 0
\(894\) −12.6321 −0.422479
\(895\) 2.10949 0.0705124
\(896\) 21.1151 0.705407
\(897\) −8.11465 −0.270940
\(898\) 33.9421 1.13266
\(899\) −69.7178 −2.32522
\(900\) −1.03083 −0.0343609
\(901\) 1.69274 0.0563933
\(902\) 15.0711 0.501812
\(903\) 45.2390 1.50546
\(904\) −2.32082 −0.0771894
\(905\) −29.6934 −0.987043
\(906\) −22.1303 −0.735230
\(907\) −8.93894 −0.296813 −0.148406 0.988926i \(-0.547414\pi\)
−0.148406 + 0.988926i \(0.547414\pi\)
\(908\) 10.7761 0.357617
\(909\) −3.63572 −0.120589
\(910\) −20.0931 −0.666081
\(911\) −25.3584 −0.840161 −0.420080 0.907487i \(-0.637998\pi\)
−0.420080 + 0.907487i \(0.637998\pi\)
\(912\) 0 0
\(913\) 1.23059 0.0407265
\(914\) 37.9259 1.25448
\(915\) −62.7290 −2.07376
\(916\) 7.23356 0.239004
\(917\) 10.8324 0.357716
\(918\) −6.66069 −0.219836
\(919\) −14.6153 −0.482113 −0.241056 0.970511i \(-0.577494\pi\)
−0.241056 + 0.970511i \(0.577494\pi\)
\(920\) 19.5198 0.643548
\(921\) −58.4979 −1.92757
\(922\) −30.4296 −1.00215
\(923\) −4.35260 −0.143268
\(924\) −3.67729 −0.120974
\(925\) −18.6144 −0.612036
\(926\) 16.5900 0.545181
\(927\) −5.04118 −0.165574
\(928\) 19.2163 0.630806
\(929\) −10.5585 −0.346412 −0.173206 0.984886i \(-0.555413\pi\)
−0.173206 + 0.984886i \(0.555413\pi\)
\(930\) 63.5260 2.08310
\(931\) 0 0
\(932\) −0.928340 −0.0304088
\(933\) 30.2875 0.991567
\(934\) 29.0392 0.950192
\(935\) 3.71503 0.121494
\(936\) 5.60712 0.183274
\(937\) 5.86722 0.191674 0.0958369 0.995397i \(-0.469447\pi\)
0.0958369 + 0.995397i \(0.469447\pi\)
\(938\) 19.2402 0.628216
\(939\) −49.3197 −1.60949
\(940\) −0.110019 −0.00358842
\(941\) 13.7997 0.449857 0.224928 0.974375i \(-0.427785\pi\)
0.224928 + 0.974375i \(0.427785\pi\)
\(942\) 40.5242 1.32035
\(943\) 29.6817 0.966568
\(944\) 7.62962 0.248323
\(945\) 37.8648 1.23174
\(946\) 7.31244 0.237748
\(947\) 25.5398 0.829934 0.414967 0.909837i \(-0.363793\pi\)
0.414967 + 0.909837i \(0.363793\pi\)
\(948\) 3.10874 0.100967
\(949\) −20.1785 −0.655023
\(950\) 0 0
\(951\) 36.1371 1.17183
\(952\) 16.2297 0.526008
\(953\) 57.9573 1.87742 0.938710 0.344709i \(-0.112022\pi\)
0.938710 + 0.344709i \(0.112022\pi\)
\(954\) −1.64145 −0.0531439
\(955\) 20.1269 0.651292
\(956\) −1.59246 −0.0515039
\(957\) 14.6242 0.472733
\(958\) 22.8698 0.738891
\(959\) −85.4030 −2.75781
\(960\) −47.4072 −1.53006
\(961\) 62.4431 2.01429
\(962\) 19.6800 0.634510
\(963\) 5.11217 0.164737
\(964\) 8.25810 0.265975
\(965\) 23.4516 0.754933
\(966\) 22.7761 0.732808
\(967\) −7.02299 −0.225844 −0.112922 0.993604i \(-0.536021\pi\)
−0.112922 + 0.993604i \(0.536021\pi\)
\(968\) −3.05812 −0.0982916
\(969\) 0 0
\(970\) −10.7646 −0.345631
\(971\) −13.0628 −0.419206 −0.209603 0.977787i \(-0.567217\pi\)
−0.209603 + 0.977787i \(0.567217\pi\)
\(972\) −5.31636 −0.170522
\(973\) 4.91336 0.157515
\(974\) 2.43803 0.0781194
\(975\) 6.42851 0.205877
\(976\) −32.9488 −1.05467
\(977\) −31.2042 −0.998311 −0.499156 0.866512i \(-0.666356\pi\)
−0.499156 + 0.866512i \(0.666356\pi\)
\(978\) 54.7773 1.75159
\(979\) 15.2049 0.485951
\(980\) −9.04642 −0.288977
\(981\) −13.5820 −0.433641
\(982\) 26.1342 0.833976
\(983\) 26.6683 0.850587 0.425294 0.905055i \(-0.360171\pi\)
0.425294 + 0.905055i \(0.360171\pi\)
\(984\) −75.8646 −2.41847
\(985\) 5.55003 0.176839
\(986\) −12.5452 −0.399521
\(987\) −0.660461 −0.0210227
\(988\) 0 0
\(989\) 14.4015 0.457940
\(990\) −3.60246 −0.114494
\(991\) 41.2444 1.31017 0.655086 0.755554i \(-0.272632\pi\)
0.655086 + 0.755554i \(0.272632\pi\)
\(992\) −25.7557 −0.817745
\(993\) −36.9285 −1.17189
\(994\) 12.2168 0.387494
\(995\) 14.4990 0.459650
\(996\) −1.20401 −0.0381506
\(997\) −21.1364 −0.669396 −0.334698 0.942325i \(-0.608634\pi\)
−0.334698 + 0.942325i \(0.608634\pi\)
\(998\) 30.9501 0.979708
\(999\) −37.0863 −1.17336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.2.a.k.1.7 9
19.7 even 3 209.2.e.b.144.3 yes 18
19.11 even 3 209.2.e.b.45.3 18
19.18 odd 2 3971.2.a.l.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.e.b.45.3 18 19.11 even 3
209.2.e.b.144.3 yes 18 19.7 even 3
3971.2.a.k.1.7 9 1.1 even 1 trivial
3971.2.a.l.1.3 9 19.18 odd 2