L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (−0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + (−0.499 − 0.866i)21-s + (0.5 + 0.866i)25-s + 0.999·27-s − 0.999·28-s + 31-s + (0.499 − 0.866i)36-s − 1.73i·37-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (−0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + (−0.499 − 0.866i)21-s + (0.5 + 0.866i)25-s + 0.999·27-s − 0.999·28-s + 31-s + (0.499 − 0.866i)36-s − 1.73i·37-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.0977−0.995i)Λ(1−s)
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.0977−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
−0.0977−0.995i
|
Analytic conductor: |
0.199126 |
Root analytic conductor: |
0.446236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :0), −0.0977−0.995i)
|
Particular Values
L(21) |
≈ |
0.7371684953 |
L(21) |
≈ |
0.7371684953 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 7 | 1+(0.5−0.866i)T |
| 19 | 1−T |
good | 2 | 1+(−0.5−0.866i)T2 |
| 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1−T2 |
| 13 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1−T+T2 |
| 37 | 1+1.73iT−T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 67 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 71 | 1+(−0.5−0.866i)T2 |
| 73 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 79 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.72465722849884184555307424374, −10.96019233253088897473532960778, −9.904053640622015743462921526270, −9.127534694388174600124712901249, −8.126019259460014878812871146585, −7.00488337267592848707182301154, −5.92022987538784082001969568899, −5.01560407538597719289788033501, −3.57272492612994412258823854923, −2.74540623192990583307490111422,
1.19629506160355462175283295401, 2.69094705467349542082355555945, 4.57028874424349059741946218838, 5.66331650678136141965320339859, 6.80595339897344670954338681743, 7.01202312709295540649604253045, 8.342560389871093536005179049531, 9.804071045336939630591414474186, 10.30880386432574066113567022219, 11.44220988600568209298668792885