L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (−0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + (−0.499 − 0.866i)21-s + (0.5 + 0.866i)25-s + 0.999·27-s − 0.999·28-s + 31-s + (0.499 − 0.866i)36-s − 1.73i·37-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (−0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + (−0.499 − 0.866i)21-s + (0.5 + 0.866i)25-s + 0.999·27-s − 0.999·28-s + 31-s + (0.499 − 0.866i)36-s − 1.73i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7371684953\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7371684953\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72465722849884184555307424374, −10.96019233253088897473532960778, −9.904053640622015743462921526270, −9.127534694388174600124712901249, −8.126019259460014878812871146585, −7.00488337267592848707182301154, −5.92022987538784082001969568899, −5.01560407538597719289788033501, −3.57272492612994412258823854923, −2.74540623192990583307490111422,
1.19629506160355462175283295401, 2.69094705467349542082355555945, 4.57028874424349059741946218838, 5.66331650678136141965320339859, 6.80595339897344670954338681743, 7.01202312709295540649604253045, 8.342560389871093536005179049531, 9.804071045336939630591414474186, 10.30880386432574066113567022219, 11.44220988600568209298668792885