Properties

Label 399.1.q.a
Level 399399
Weight 11
Character orbit 399.q
Analytic conductor 0.1990.199
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,1,Mod(293,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.293");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 399.q (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1991269400410.199126940041
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.7643717613.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ6q3ζ62q4ζ6q7+ζ62q9q12+ζ62q13ζ6q16+q19+ζ62q21ζ62q25+q27q28+2ζ6q97+O(q100) q - \zeta_{6} q^{3} - \zeta_{6}^{2} q^{4} - \zeta_{6} q^{7} + \zeta_{6}^{2} q^{9} - q^{12} + \zeta_{6}^{2} q^{13} - \zeta_{6} q^{16} + q^{19} + \zeta_{6}^{2} q^{21} - \zeta_{6}^{2} q^{25} + q^{27} - q^{28} + \cdots - 2 \zeta_{6} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3+q4q7q92q12q13q16+2q19q21+q25+2q272q28+2q31+q36+2q39q43q48q49+q52q57+2q97+O(q100) 2 q - q^{3} + q^{4} - q^{7} - q^{9} - 2 q^{12} - q^{13} - q^{16} + 2 q^{19} - q^{21} + q^{25} + 2 q^{27} - 2 q^{28} + 2 q^{31} + q^{36} + 2 q^{39} - q^{43} - q^{48} - q^{49} + q^{52} - q^{57}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 1-1 1-1 ζ62-\zeta_{6}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
293.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0
335.1 0 −0.500000 0.866025i 0.500000 0.866025i 0 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
133.p even 6 1 inner
399.q odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.1.q.a 2
3.b odd 2 1 CM 399.1.q.a 2
7.b odd 2 1 399.1.q.b yes 2
7.c even 3 1 2793.1.r.b 2
7.c even 3 1 2793.1.bn.a 2
7.d odd 6 1 2793.1.r.a 2
7.d odd 6 1 2793.1.bn.b 2
19.d odd 6 1 399.1.q.b yes 2
21.c even 2 1 399.1.q.b yes 2
21.g even 6 1 2793.1.r.a 2
21.g even 6 1 2793.1.bn.b 2
21.h odd 6 1 2793.1.r.b 2
21.h odd 6 1 2793.1.bn.a 2
57.f even 6 1 399.1.q.b yes 2
133.i even 6 1 2793.1.r.b 2
133.j odd 6 1 2793.1.r.a 2
133.n odd 6 1 2793.1.bn.b 2
133.p even 6 1 inner 399.1.q.a 2
133.s even 6 1 2793.1.bn.a 2
399.q odd 6 1 inner 399.1.q.a 2
399.r odd 6 1 2793.1.bn.a 2
399.x even 6 1 2793.1.bn.b 2
399.bm even 6 1 2793.1.r.a 2
399.bn odd 6 1 2793.1.r.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.1.q.a 2 1.a even 1 1 trivial
399.1.q.a 2 3.b odd 2 1 CM
399.1.q.a 2 133.p even 6 1 inner
399.1.q.a 2 399.q odd 6 1 inner
399.1.q.b yes 2 7.b odd 2 1
399.1.q.b yes 2 19.d odd 6 1
399.1.q.b yes 2 21.c even 2 1
399.1.q.b yes 2 57.f even 6 1
2793.1.r.a 2 7.d odd 6 1
2793.1.r.a 2 21.g even 6 1
2793.1.r.a 2 133.j odd 6 1
2793.1.r.a 2 399.bm even 6 1
2793.1.r.b 2 7.c even 3 1
2793.1.r.b 2 21.h odd 6 1
2793.1.r.b 2 133.i even 6 1
2793.1.r.b 2 399.bn odd 6 1
2793.1.bn.a 2 7.c even 3 1
2793.1.bn.a 2 21.h odd 6 1
2793.1.bn.a 2 133.s even 6 1
2793.1.bn.a 2 399.r odd 6 1
2793.1.bn.b 2 7.d odd 6 1
2793.1.bn.b 2 21.g even 6 1
2793.1.bn.b 2 133.n odd 6 1
2793.1.bn.b 2 399.x even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T132+T13+1 T_{13}^{2} + T_{13} + 1 acting on S1new(399,[χ])S_{1}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T1)2 (T - 1)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T1)2 (T - 1)^{2} Copy content Toggle raw display
3737 T2+3 T^{2} + 3 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
6767 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
7979 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
show more
show less