L(s) = 1 | + (−0.0505 − 0.0184i)2-s + (−0.173 − 0.984i)3-s + (−1.52 − 1.28i)4-s + (1.59 − 1.33i)5-s + (−0.00934 + 0.0530i)6-s + (0.5 − 0.866i)7-s + (0.107 + 0.186i)8-s + (−0.939 + 0.342i)9-s + (−0.105 + 0.0382i)10-s + (0.760 + 1.31i)11-s + (−0.998 + 1.72i)12-s + (0.789 − 4.48i)13-s + (−0.0412 + 0.0346i)14-s + (−1.59 − 1.33i)15-s + (0.691 + 3.92i)16-s + (−3.16 − 1.15i)17-s + ⋯ |
L(s) = 1 | + (−0.0357 − 0.0130i)2-s + (−0.100 − 0.568i)3-s + (−0.764 − 0.641i)4-s + (0.712 − 0.597i)5-s + (−0.00381 + 0.0216i)6-s + (0.188 − 0.327i)7-s + (0.0380 + 0.0658i)8-s + (−0.313 + 0.114i)9-s + (−0.0332 + 0.0121i)10-s + (0.229 + 0.397i)11-s + (−0.288 + 0.499i)12-s + (0.219 − 1.24i)13-s + (−0.0110 + 0.00924i)14-s + (−0.411 − 0.345i)15-s + (0.172 + 0.980i)16-s + (−0.767 − 0.279i)17-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.644+0.764i)Λ(2−s)
Λ(s)=(=(399s/2ΓC(s+1/2)L(s)(−0.644+0.764i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
−0.644+0.764i
|
Analytic conductor: |
3.18603 |
Root analytic conductor: |
1.78494 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(232,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :1/2), −0.644+0.764i)
|
Particular Values
L(1) |
≈ |
0.450636−0.968922i |
L(21) |
≈ |
0.450636−0.968922i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.173+0.984i)T |
| 7 | 1+(−0.5+0.866i)T |
| 19 | 1+(4.14+1.33i)T |
good | 2 | 1+(0.0505+0.0184i)T+(1.53+1.28i)T2 |
| 5 | 1+(−1.59+1.33i)T+(0.868−4.92i)T2 |
| 11 | 1+(−0.760−1.31i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.789+4.48i)T+(−12.2−4.44i)T2 |
| 17 | 1+(3.16+1.15i)T+(13.0+10.9i)T2 |
| 23 | 1+(4.21+3.53i)T+(3.99+22.6i)T2 |
| 29 | 1+(−8.64+3.14i)T+(22.2−18.6i)T2 |
| 31 | 1+(3.00−5.20i)T+(−15.5−26.8i)T2 |
| 37 | 1+6.45T+37T2 |
| 41 | 1+(1.00+5.68i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−4.73+3.97i)T+(7.46−42.3i)T2 |
| 47 | 1+(−10.5+3.85i)T+(36.0−30.2i)T2 |
| 53 | 1+(−4.95−4.16i)T+(9.20+52.1i)T2 |
| 59 | 1+(−7.23−2.63i)T+(45.1+37.9i)T2 |
| 61 | 1+(−8.65−7.26i)T+(10.5+60.0i)T2 |
| 67 | 1+(6.76−2.46i)T+(51.3−43.0i)T2 |
| 71 | 1+(1.88−1.58i)T+(12.3−69.9i)T2 |
| 73 | 1+(1.07+6.11i)T+(−68.5+24.9i)T2 |
| 79 | 1+(−2.83−16.0i)T+(−74.2+27.0i)T2 |
| 83 | 1+(−7.31+12.6i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−2.41+13.6i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−0.905−0.329i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54524005234306132283853247078, −10.27585246212294992285990696495, −8.890025647808913464702924446461, −8.525359991109471128031382280721, −7.11133240783600103495294142556, −6.01114802445430223906806364898, −5.20792206397051042149104028885, −4.18336266685608268221872343970, −2.15732995376620869783055649363, −0.74304169467410138209579392953,
2.27302161535032249318531494148, 3.74108657541421354623076555791, 4.57872155581394607366559782514, 5.89744209736651973888604593775, 6.75598781826224586502926066509, 8.214857990529205273562280455414, 8.931901443570002734973452283766, 9.691811926310234975277084371782, 10.62248602633282055274013388814, 11.55970013236213263138202148355