Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(43,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 399.bo (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 |
|
−2.16597 | + | 0.788347i | −0.173648 | + | 0.984808i | 2.53783 | − | 2.12949i | −0.626322 | − | 0.525547i | −0.400254 | − | 2.26995i | 0.500000 | + | 0.866025i | −1.51310 | + | 2.62076i | −0.939693 | − | 0.342020i | 1.77091 | + | 0.644557i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
43.2 | −0.0505900 | + | 0.0184132i | −0.173648 | + | 0.984808i | −1.52987 | + | 1.28371i | 1.59327 | + | 1.33691i | −0.00934865 | − | 0.0530188i | 0.500000 | + | 0.866025i | 0.107595 | − | 0.186361i | −0.939693 | − | 0.342020i | −0.105220 | − | 0.0382971i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
43.3 | 1.71656 | − | 0.624775i | −0.173648 | + | 0.984808i | 1.02413 | − | 0.859347i | 1.38035 | + | 1.15825i | 0.317207 | + | 1.79897i | 0.500000 | + | 0.866025i | −0.605643 | + | 1.04900i | −0.939693 | − | 0.342020i | 3.09309 | + | 1.12579i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
85.1 | −0.451595 | − | 2.56112i | −0.766044 | + | 0.642788i | −4.47602 | + | 1.62914i | 1.34902 | + | 0.491004i | 1.99220 | + | 1.67165i | 0.500000 | − | 0.866025i | 3.59313 | + | 6.22348i | 0.173648 | − | 0.984808i | 0.648308 | − | 3.67674i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
85.2 | −0.124392 | − | 0.705462i | −0.766044 | + | 0.642788i | 1.39718 | − | 0.508532i | −0.780211 | − | 0.283974i | 0.548752 | + | 0.460458i | 0.500000 | − | 0.866025i | −1.24889 | − | 2.16315i | 0.173648 | − | 0.984808i | −0.103281 | + | 0.585733i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
85.3 | 0.0759867 | + | 0.430942i | −0.766044 | + | 0.642788i | 1.69945 | − | 0.618549i | 2.96328 | + | 1.07855i | −0.335213 | − | 0.281277i | 0.500000 | − | 0.866025i | 0.833284 | + | 1.44329i | 0.173648 | − | 0.984808i | −0.239621 | + | 1.35896i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
169.1 | −0.451595 | + | 2.56112i | −0.766044 | − | 0.642788i | −4.47602 | − | 1.62914i | 1.34902 | − | 0.491004i | 1.99220 | − | 1.67165i | 0.500000 | + | 0.866025i | 3.59313 | − | 6.22348i | 0.173648 | + | 0.984808i | 0.648308 | + | 3.67674i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
169.2 | −0.124392 | + | 0.705462i | −0.766044 | − | 0.642788i | 1.39718 | + | 0.508532i | −0.780211 | + | 0.283974i | 0.548752 | − | 0.460458i | 0.500000 | + | 0.866025i | −1.24889 | + | 2.16315i | 0.173648 | + | 0.984808i | −0.103281 | − | 0.585733i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
169.3 | 0.0759867 | − | 0.430942i | −0.766044 | − | 0.642788i | 1.69945 | + | 0.618549i | 2.96328 | − | 1.07855i | −0.335213 | + | 0.281277i | 0.500000 | + | 0.866025i | 0.833284 | − | 1.44329i | 0.173648 | + | 0.984808i | −0.239621 | − | 1.35896i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
232.1 | −2.16597 | − | 0.788347i | −0.173648 | − | 0.984808i | 2.53783 | + | 2.12949i | −0.626322 | + | 0.525547i | −0.400254 | + | 2.26995i | 0.500000 | − | 0.866025i | −1.51310 | − | 2.62076i | −0.939693 | + | 0.342020i | 1.77091 | − | 0.644557i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
232.2 | −0.0505900 | − | 0.0184132i | −0.173648 | − | 0.984808i | −1.52987 | − | 1.28371i | 1.59327 | − | 1.33691i | −0.00934865 | + | 0.0530188i | 0.500000 | − | 0.866025i | 0.107595 | + | 0.186361i | −0.939693 | + | 0.342020i | −0.105220 | + | 0.0382971i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
232.3 | 1.71656 | + | 0.624775i | −0.173648 | − | 0.984808i | 1.02413 | + | 0.859347i | 1.38035 | − | 1.15825i | 0.317207 | − | 1.79897i | 0.500000 | − | 0.866025i | −0.605643 | − | 1.04900i | −0.939693 | + | 0.342020i | 3.09309 | − | 1.12579i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.1 | −1.45949 | + | 1.22466i | 0.939693 | + | 0.342020i | 0.283031 | − | 1.60515i | 0.525672 | + | 2.98124i | −1.79033 | + | 0.651628i | 0.500000 | − | 0.866025i | −0.352551 | − | 0.610637i | 0.766044 | + | 0.642788i | −4.41822 | − | 3.70732i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.2 | −0.897543 | + | 0.753128i | 0.939693 | + | 0.342020i | −0.108915 | + | 0.617687i | −0.421473 | − | 2.39029i | −1.10100 | + | 0.400731i | 0.500000 | − | 0.866025i | −1.53910 | − | 2.66580i | 0.766044 | + | 0.642788i | 2.17849 | + | 1.82797i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.3 | 1.85704 | − | 1.55824i | 0.939693 | + | 0.342020i | 0.673180 | − | 3.81779i | 0.0164156 | + | 0.0930973i | 2.27799 | − | 0.829121i | 0.500000 | − | 0.866025i | −2.27472 | − | 3.93994i | 0.766044 | + | 0.642788i | 0.175552 | + | 0.147306i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
358.1 | −1.45949 | − | 1.22466i | 0.939693 | − | 0.342020i | 0.283031 | + | 1.60515i | 0.525672 | − | 2.98124i | −1.79033 | − | 0.651628i | 0.500000 | + | 0.866025i | −0.352551 | + | 0.610637i | 0.766044 | − | 0.642788i | −4.41822 | + | 3.70732i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
358.2 | −0.897543 | − | 0.753128i | 0.939693 | − | 0.342020i | −0.108915 | − | 0.617687i | −0.421473 | + | 2.39029i | −1.10100 | − | 0.400731i | 0.500000 | + | 0.866025i | −1.53910 | + | 2.66580i | 0.766044 | − | 0.642788i | 2.17849 | − | 1.82797i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
358.3 | 1.85704 | + | 1.55824i | 0.939693 | − | 0.342020i | 0.673180 | + | 3.81779i | 0.0164156 | − | 0.0930973i | 2.27799 | + | 0.829121i | 0.500000 | + | 0.866025i | −2.27472 | + | 3.93994i | 0.766044 | − | 0.642788i | 0.175552 | − | 0.147306i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.bo.b | ✓ | 18 |
19.e | even | 9 | 1 | inner | 399.2.bo.b | ✓ | 18 |
19.e | even | 9 | 1 | 7581.2.a.bg | 9 | ||
19.f | odd | 18 | 1 | 7581.2.a.bh | 9 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.bo.b | ✓ | 18 | 1.a | even | 1 | 1 | trivial |
399.2.bo.b | ✓ | 18 | 19.e | even | 9 | 1 | inner |
7581.2.a.bg | 9 | 19.e | even | 9 | 1 | ||
7581.2.a.bh | 9 | 19.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .