L(s) = 1 | + (−0.124 + 0.705i)2-s + (−0.766 − 0.642i)3-s + (1.39 + 0.508i)4-s + (−0.780 + 0.283i)5-s + (0.548 − 0.460i)6-s + (0.5 + 0.866i)7-s + (−1.24 + 2.16i)8-s + (0.173 + 0.984i)9-s + (−0.103 − 0.585i)10-s + (−1.78 + 3.08i)11-s + (−0.743 − 1.28i)12-s + (0.608 − 0.510i)13-s + (−0.673 + 0.245i)14-s + (0.780 + 0.283i)15-s + (0.907 + 0.761i)16-s + (−0.0572 + 0.324i)17-s + ⋯ |
L(s) = 1 | + (−0.0879 + 0.498i)2-s + (−0.442 − 0.371i)3-s + (0.698 + 0.254i)4-s + (−0.348 + 0.126i)5-s + (0.224 − 0.187i)6-s + (0.188 + 0.327i)7-s + (−0.441 + 0.764i)8-s + (0.0578 + 0.328i)9-s + (−0.0326 − 0.185i)10-s + (−0.536 + 0.930i)11-s + (−0.214 − 0.371i)12-s + (0.168 − 0.141i)13-s + (−0.179 + 0.0654i)14-s + (0.201 + 0.0733i)15-s + (0.226 + 0.190i)16-s + (−0.0138 + 0.0787i)17-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.0745−0.997i)Λ(2−s)
Λ(s)=(=(399s/2ΓC(s+1/2)L(s)(−0.0745−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
−0.0745−0.997i
|
Analytic conductor: |
3.18603 |
Root analytic conductor: |
1.78494 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :1/2), −0.0745−0.997i)
|
Particular Values
L(1) |
≈ |
0.805730+0.868246i |
L(21) |
≈ |
0.805730+0.868246i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.766+0.642i)T |
| 7 | 1+(−0.5−0.866i)T |
| 19 | 1+(−3.95−1.82i)T |
good | 2 | 1+(0.124−0.705i)T+(−1.87−0.684i)T2 |
| 5 | 1+(0.780−0.283i)T+(3.83−3.21i)T2 |
| 11 | 1+(1.78−3.08i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.608+0.510i)T+(2.25−12.8i)T2 |
| 17 | 1+(0.0572−0.324i)T+(−15.9−5.81i)T2 |
| 23 | 1+(−3.33−1.21i)T+(17.6+14.7i)T2 |
| 29 | 1+(−0.746−4.23i)T+(−27.2+9.91i)T2 |
| 31 | 1+(0.512+0.887i)T+(−15.5+26.8i)T2 |
| 37 | 1−0.180T+37T2 |
| 41 | 1+(1.39+1.17i)T+(7.11+40.3i)T2 |
| 43 | 1+(−2.89+1.05i)T+(32.9−27.6i)T2 |
| 47 | 1+(0.317+1.80i)T+(−44.1+16.0i)T2 |
| 53 | 1+(5.35+1.95i)T+(40.6+34.0i)T2 |
| 59 | 1+(−1.16+6.63i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−11.8−4.32i)T+(46.7+39.2i)T2 |
| 67 | 1+(1.26+7.18i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−12.3+4.48i)T+(54.3−45.6i)T2 |
| 73 | 1+(2.95+2.47i)T+(12.6+71.8i)T2 |
| 79 | 1+(4.44+3.72i)T+(13.7+77.7i)T2 |
| 83 | 1+(4.77+8.27i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−0.984+0.825i)T+(15.4−87.6i)T2 |
| 97 | 1+(−1.42+8.09i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54063613350801273386380293111, −10.84810653699289035589796310152, −9.723819243854628117057063221395, −8.436913578142831555511016343522, −7.54587220328654743053985292726, −7.03714049229051410708213448764, −5.86603543731709809846385080341, −5.01884282925414518313468630088, −3.30095893258468043358184012989, −1.90156279304206491184500848851,
0.859373239360299371767395427317, 2.72077140799961471935681494693, 3.88583896661463370961833629629, 5.22384094051104571877475279067, 6.20790440168368072479802610701, 7.24145331148411774363013242801, 8.301607556780356469894245820368, 9.519200804262092616692894299697, 10.32815766041535388147679044964, 11.21579316658703181551763880223