Properties

Label 399.2.bo.b.169.2
Level $399$
Weight $2$
Character 399.169
Analytic conductor $3.186$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(43,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} + 18 x^{16} - 41 x^{15} + 177 x^{14} - 369 x^{13} + 1063 x^{12} - 1788 x^{11} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 169.2
Root \(0.358173 - 0.620373i\) of defining polynomial
Character \(\chi\) \(=\) 399.169
Dual form 399.2.bo.b.85.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.124392 + 0.705462i) q^{2} +(-0.766044 - 0.642788i) q^{3} +(1.39718 + 0.508532i) q^{4} +(-0.780211 + 0.283974i) q^{5} +(0.548752 - 0.460458i) q^{6} +(0.500000 + 0.866025i) q^{7} +(-1.24889 + 2.16315i) q^{8} +(0.173648 + 0.984808i) q^{9} +O(q^{10})\) \(q+(-0.124392 + 0.705462i) q^{2} +(-0.766044 - 0.642788i) q^{3} +(1.39718 + 0.508532i) q^{4} +(-0.780211 + 0.283974i) q^{5} +(0.548752 - 0.460458i) q^{6} +(0.500000 + 0.866025i) q^{7} +(-1.24889 + 2.16315i) q^{8} +(0.173648 + 0.984808i) q^{9} +(-0.103281 - 0.585733i) q^{10} +(-1.78098 + 3.08475i) q^{11} +(-0.743425 - 1.28765i) q^{12} +(0.608032 - 0.510199i) q^{13} +(-0.673144 + 0.245004i) q^{14} +(0.780211 + 0.283974i) q^{15} +(0.907319 + 0.761331i) q^{16} +(-0.0572261 + 0.324545i) q^{17} -0.716345 q^{18} +(3.95637 + 1.82951i) q^{19} -1.23451 q^{20} +(0.173648 - 0.984808i) q^{21} +(-1.95464 - 1.64014i) q^{22} +(3.33452 + 1.21367i) q^{23} +(2.34715 - 0.854294i) q^{24} +(-3.30213 + 2.77082i) q^{25} +(0.284292 + 0.492408i) q^{26} +(0.500000 - 0.866025i) q^{27} +(0.258189 + 1.46426i) q^{28} +(0.746560 + 4.23395i) q^{29} +(-0.297385 + 0.515085i) q^{30} +(-0.512645 - 0.887927i) q^{31} +(-4.47679 + 3.75647i) q^{32} +(3.34715 - 1.21826i) q^{33} +(-0.221836 - 0.0807417i) q^{34} +(-0.636034 - 0.533696i) q^{35} +(-0.258189 + 1.46426i) q^{36} +0.180743 q^{37} +(-1.78279 + 2.56349i) q^{38} -0.793729 q^{39} +(0.360124 - 2.04236i) q^{40} +(-1.39485 - 1.17042i) q^{41} +(0.673144 + 0.245004i) q^{42} +(2.89168 - 1.05249i) q^{43} +(-4.05705 + 3.40427i) q^{44} +(-0.415142 - 0.719046i) q^{45} +(-1.27098 + 2.20141i) q^{46} +(-0.317862 - 1.80269i) q^{47} +(-0.205672 - 1.16643i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-1.54395 - 2.67420i) q^{50} +(0.252451 - 0.211832i) q^{51} +(1.10898 - 0.403637i) q^{52} +(-5.35983 - 1.95082i) q^{53} +(0.548752 + 0.460458i) q^{54} +(0.513554 - 2.91251i) q^{55} -2.49779 q^{56} +(-1.85477 - 3.94460i) q^{57} -3.07976 q^{58} +(1.16966 - 6.63347i) q^{59} +(0.945686 + 0.793525i) q^{60} +(11.8818 + 4.32463i) q^{61} +(0.690168 - 0.251201i) q^{62} +(-0.766044 + 0.642788i) q^{63} +(-0.908751 - 1.57400i) q^{64} +(-0.329510 + 0.570728i) q^{65} +(0.443080 + 2.51283i) q^{66} +(-1.26660 - 7.18325i) q^{67} +(-0.244997 + 0.424347i) q^{68} +(-1.77426 - 3.07311i) q^{69} +(0.455620 - 0.382310i) q^{70} +(12.3340 - 4.48919i) q^{71} +(-2.34715 - 0.854294i) q^{72} +(-2.95316 - 2.47800i) q^{73} +(-0.0224830 + 0.127508i) q^{74} +4.31063 q^{75} +(4.59740 + 4.56811i) q^{76} -3.56197 q^{77} +(0.0987336 - 0.559946i) q^{78} +(-4.44302 - 3.72813i) q^{79} +(-0.924098 - 0.336344i) q^{80} +(-0.939693 + 0.342020i) q^{81} +(0.999198 - 0.838426i) q^{82} +(-4.77855 - 8.27669i) q^{83} +(0.743425 - 1.28765i) q^{84} +(-0.0475139 - 0.269464i) q^{85} +(0.382787 + 2.17089i) q^{86} +(2.14963 - 3.72328i) q^{87} +(-4.44852 - 7.70506i) q^{88} +(0.984013 - 0.825685i) q^{89} +(0.558900 - 0.203423i) q^{90} +(0.745862 + 0.271471i) q^{91} +(4.04174 + 3.39142i) q^{92} +(-0.178040 + 1.00971i) q^{93} +1.31127 q^{94} +(-3.60634 - 0.303903i) q^{95} +5.84403 q^{96} +(1.42760 - 8.09632i) q^{97} +(-0.548752 - 0.460458i) q^{98} +(-3.34715 - 1.21826i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 3 q^{2} + 3 q^{4} + 12 q^{5} + 3 q^{6} + 9 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 3 q^{2} + 3 q^{4} + 12 q^{5} + 3 q^{6} + 9 q^{7} - 6 q^{8} + 6 q^{10} + 12 q^{11} + 9 q^{12} - 6 q^{14} - 12 q^{15} + 27 q^{16} - 3 q^{17} - 6 q^{18} - 3 q^{19} + 3 q^{22} - 18 q^{23} - 21 q^{24} - 6 q^{25} + 21 q^{26} + 9 q^{27} - 3 q^{28} - 15 q^{29} - 6 q^{30} - 27 q^{31} - 21 q^{32} - 3 q^{33} + 21 q^{34} + 6 q^{35} + 3 q^{36} - 60 q^{38} - 18 q^{39} + 24 q^{41} + 6 q^{42} + 3 q^{43} - 27 q^{44} + 3 q^{46} - 3 q^{47} - 9 q^{49} + 15 q^{50} + 12 q^{51} - 57 q^{52} + 45 q^{53} + 3 q^{54} - 12 q^{56} - 42 q^{58} + 45 q^{59} + 18 q^{60} - 30 q^{61} - 27 q^{62} + 24 q^{64} - 48 q^{65} - 12 q^{66} - 66 q^{67} + 18 q^{68} - 21 q^{69} - 6 q^{70} - 12 q^{71} + 21 q^{72} + 27 q^{73} + 12 q^{74} + 18 q^{75} - 27 q^{76} + 24 q^{77} - 3 q^{78} - 12 q^{79} + 36 q^{80} + 57 q^{82} - 30 q^{83} - 9 q^{84} + 18 q^{85} + 69 q^{86} - 15 q^{87} - 42 q^{88} - 21 q^{89} - 12 q^{90} + 48 q^{92} - 15 q^{93} + 114 q^{94} + 24 q^{95} + 12 q^{96} + 36 q^{97} - 3 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.124392 + 0.705462i −0.0879585 + 0.498837i 0.908720 + 0.417405i \(0.137060\pi\)
−0.996679 + 0.0814319i \(0.974051\pi\)
\(3\) −0.766044 0.642788i −0.442276 0.371114i
\(4\) 1.39718 + 0.508532i 0.698591 + 0.254266i
\(5\) −0.780211 + 0.283974i −0.348921 + 0.126997i −0.510534 0.859857i \(-0.670552\pi\)
0.161614 + 0.986854i \(0.448330\pi\)
\(6\) 0.548752 0.460458i 0.224027 0.187981i
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) −1.24889 + 2.16315i −0.441551 + 0.764788i
\(9\) 0.173648 + 0.984808i 0.0578827 + 0.328269i
\(10\) −0.103281 0.585733i −0.0326602 0.185225i
\(11\) −1.78098 + 3.08475i −0.536987 + 0.930088i 0.462078 + 0.886839i \(0.347104\pi\)
−0.999064 + 0.0432486i \(0.986229\pi\)
\(12\) −0.743425 1.28765i −0.214608 0.371712i
\(13\) 0.608032 0.510199i 0.168638 0.141504i −0.554563 0.832142i \(-0.687115\pi\)
0.723201 + 0.690638i \(0.242670\pi\)
\(14\) −0.673144 + 0.245004i −0.179905 + 0.0654802i
\(15\) 0.780211 + 0.283974i 0.201450 + 0.0733217i
\(16\) 0.907319 + 0.761331i 0.226830 + 0.190333i
\(17\) −0.0572261 + 0.324545i −0.0138794 + 0.0787138i −0.990961 0.134153i \(-0.957169\pi\)
0.977081 + 0.212866i \(0.0682799\pi\)
\(18\) −0.716345 −0.168844
\(19\) 3.95637 + 1.82951i 0.907654 + 0.419720i
\(20\) −1.23451 −0.276044
\(21\) 0.173648 0.984808i 0.0378931 0.214903i
\(22\) −1.95464 1.64014i −0.416730 0.349678i
\(23\) 3.33452 + 1.21367i 0.695296 + 0.253067i 0.665401 0.746486i \(-0.268261\pi\)
0.0298946 + 0.999553i \(0.490483\pi\)
\(24\) 2.34715 0.854294i 0.479111 0.174382i
\(25\) −3.30213 + 2.77082i −0.660427 + 0.554164i
\(26\) 0.284292 + 0.492408i 0.0557543 + 0.0965692i
\(27\) 0.500000 0.866025i 0.0962250 0.166667i
\(28\) 0.258189 + 1.46426i 0.0487931 + 0.276719i
\(29\) 0.746560 + 4.23395i 0.138633 + 0.786225i 0.972261 + 0.233899i \(0.0751486\pi\)
−0.833628 + 0.552326i \(0.813740\pi\)
\(30\) −0.297385 + 0.515085i −0.0542948 + 0.0940413i
\(31\) −0.512645 0.887927i −0.0920738 0.159476i 0.816310 0.577614i \(-0.196016\pi\)
−0.908384 + 0.418138i \(0.862683\pi\)
\(32\) −4.47679 + 3.75647i −0.791392 + 0.664056i
\(33\) 3.34715 1.21826i 0.582665 0.212073i
\(34\) −0.221836 0.0807417i −0.0380446 0.0138471i
\(35\) −0.636034 0.533696i −0.107509 0.0902110i
\(36\) −0.258189 + 1.46426i −0.0430315 + 0.244043i
\(37\) 0.180743 0.0297140 0.0148570 0.999890i \(-0.495271\pi\)
0.0148570 + 0.999890i \(0.495271\pi\)
\(38\) −1.78279 + 2.56349i −0.289208 + 0.415854i
\(39\) −0.793729 −0.127098
\(40\) 0.360124 2.04236i 0.0569406 0.322926i
\(41\) −1.39485 1.17042i −0.217840 0.182789i 0.527337 0.849656i \(-0.323191\pi\)
−0.745177 + 0.666867i \(0.767635\pi\)
\(42\) 0.673144 + 0.245004i 0.103868 + 0.0378050i
\(43\) 2.89168 1.05249i 0.440977 0.160503i −0.111983 0.993710i \(-0.535720\pi\)
0.552961 + 0.833207i \(0.313498\pi\)
\(44\) −4.05705 + 3.40427i −0.611624 + 0.513213i
\(45\) −0.415142 0.719046i −0.0618856 0.107189i
\(46\) −1.27098 + 2.20141i −0.187396 + 0.324580i
\(47\) −0.317862 1.80269i −0.0463650 0.262949i 0.952810 0.303568i \(-0.0981780\pi\)
−0.999175 + 0.0406193i \(0.987067\pi\)
\(48\) −0.205672 1.16643i −0.0296863 0.168359i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −1.54395 2.67420i −0.218347 0.378189i
\(51\) 0.252451 0.211832i 0.0353503 0.0296624i
\(52\) 1.10898 0.403637i 0.153788 0.0559744i
\(53\) −5.35983 1.95082i −0.736229 0.267966i −0.0534301 0.998572i \(-0.517015\pi\)
−0.682799 + 0.730606i \(0.739238\pi\)
\(54\) 0.548752 + 0.460458i 0.0746757 + 0.0626604i
\(55\) 0.513554 2.91251i 0.0692476 0.392723i
\(56\) −2.49779 −0.333781
\(57\) −1.85477 3.94460i −0.245670 0.522475i
\(58\) −3.07976 −0.404392
\(59\) 1.16966 6.63347i 0.152277 0.863604i −0.808957 0.587868i \(-0.799967\pi\)
0.961233 0.275736i \(-0.0889215\pi\)
\(60\) 0.945686 + 0.793525i 0.122088 + 0.102444i
\(61\) 11.8818 + 4.32463i 1.52131 + 0.553712i 0.961475 0.274892i \(-0.0886423\pi\)
0.559835 + 0.828604i \(0.310864\pi\)
\(62\) 0.690168 0.251201i 0.0876514 0.0319025i
\(63\) −0.766044 + 0.642788i −0.0965125 + 0.0809836i
\(64\) −0.908751 1.57400i −0.113594 0.196750i
\(65\) −0.329510 + 0.570728i −0.0408707 + 0.0707901i
\(66\) 0.443080 + 2.51283i 0.0545394 + 0.309308i
\(67\) −1.26660 7.18325i −0.154740 0.877574i −0.959023 0.283328i \(-0.908562\pi\)
0.804283 0.594246i \(-0.202550\pi\)
\(68\) −0.244997 + 0.424347i −0.0297103 + 0.0514597i
\(69\) −1.77426 3.07311i −0.213596 0.369959i
\(70\) 0.455620 0.382310i 0.0544570 0.0456948i
\(71\) 12.3340 4.48919i 1.46377 0.532769i 0.517370 0.855762i \(-0.326911\pi\)
0.946402 + 0.322992i \(0.104689\pi\)
\(72\) −2.34715 0.854294i −0.276615 0.100679i
\(73\) −2.95316 2.47800i −0.345641 0.290027i 0.453396 0.891309i \(-0.350212\pi\)
−0.799037 + 0.601282i \(0.794657\pi\)
\(74\) −0.0224830 + 0.127508i −0.00261360 + 0.0148225i
\(75\) 4.31063 0.497749
\(76\) 4.59740 + 4.56811i 0.527358 + 0.523998i
\(77\) −3.56197 −0.405924
\(78\) 0.0987336 0.559946i 0.0111794 0.0634014i
\(79\) −4.44302 3.72813i −0.499878 0.419448i 0.357672 0.933847i \(-0.383570\pi\)
−0.857551 + 0.514399i \(0.828015\pi\)
\(80\) −0.924098 0.336344i −0.103317 0.0376044i
\(81\) −0.939693 + 0.342020i −0.104410 + 0.0380022i
\(82\) 0.999198 0.838426i 0.110343 0.0925887i
\(83\) −4.77855 8.27669i −0.524514 0.908484i −0.999593 0.0285412i \(-0.990914\pi\)
0.475079 0.879943i \(-0.342420\pi\)
\(84\) 0.743425 1.28765i 0.0811143 0.140494i
\(85\) −0.0475139 0.269464i −0.00515360 0.0292275i
\(86\) 0.382787 + 2.17089i 0.0412770 + 0.234094i
\(87\) 2.14963 3.72328i 0.230465 0.399177i
\(88\) −4.44852 7.70506i −0.474214 0.821362i
\(89\) 0.984013 0.825685i 0.104305 0.0875224i −0.589144 0.808028i \(-0.700535\pi\)
0.693449 + 0.720506i \(0.256090\pi\)
\(90\) 0.558900 0.203423i 0.0589133 0.0214427i
\(91\) 0.745862 + 0.271471i 0.0781875 + 0.0284579i
\(92\) 4.04174 + 3.39142i 0.421381 + 0.353580i
\(93\) −0.178040 + 1.00971i −0.0184619 + 0.104702i
\(94\) 1.31127 0.135247
\(95\) −3.60634 0.303903i −0.370002 0.0311798i
\(96\) 5.84403 0.596454
\(97\) 1.42760 8.09632i 0.144951 0.822056i −0.822456 0.568829i \(-0.807397\pi\)
0.967407 0.253228i \(-0.0814922\pi\)
\(98\) −0.548752 0.460458i −0.0554324 0.0465133i
\(99\) −3.34715 1.21826i −0.336402 0.122440i
\(100\) −6.02273 + 2.19210i −0.602273 + 0.219210i
\(101\) −6.80854 + 5.71304i −0.677475 + 0.568469i −0.915267 0.402847i \(-0.868021\pi\)
0.237792 + 0.971316i \(0.423576\pi\)
\(102\) 0.118036 + 0.204445i 0.0116874 + 0.0202431i
\(103\) 9.41003 16.2987i 0.927198 1.60595i 0.139211 0.990263i \(-0.455543\pi\)
0.787987 0.615692i \(-0.211123\pi\)
\(104\) 0.344269 + 1.95245i 0.0337584 + 0.191453i
\(105\) 0.144177 + 0.817669i 0.0140702 + 0.0797963i
\(106\) 2.04295 3.53849i 0.198429 0.343689i
\(107\) −2.97404 5.15118i −0.287511 0.497984i 0.685704 0.727881i \(-0.259494\pi\)
−0.973215 + 0.229897i \(0.926161\pi\)
\(108\) 1.13899 0.955728i 0.109600 0.0919650i
\(109\) −5.02428 + 1.82869i −0.481239 + 0.175157i −0.571237 0.820785i \(-0.693536\pi\)
0.0899978 + 0.995942i \(0.471314\pi\)
\(110\) 1.99078 + 0.724586i 0.189814 + 0.0690866i
\(111\) −0.138457 0.116180i −0.0131418 0.0110273i
\(112\) −0.205672 + 1.16643i −0.0194342 + 0.110217i
\(113\) 20.5092 1.92935 0.964673 0.263450i \(-0.0848605\pi\)
0.964673 + 0.263450i \(0.0848605\pi\)
\(114\) 3.01348 0.817792i 0.282238 0.0765932i
\(115\) −2.94628 −0.274742
\(116\) −1.11002 + 6.29525i −0.103063 + 0.584499i
\(117\) 0.608032 + 0.510199i 0.0562126 + 0.0471680i
\(118\) 4.53416 + 1.65030i 0.417404 + 0.151923i
\(119\) −0.309677 + 0.112713i −0.0283881 + 0.0103324i
\(120\) −1.58868 + 1.33306i −0.145026 + 0.121691i
\(121\) −0.843800 1.46150i −0.0767091 0.132864i
\(122\) −4.52886 + 7.84422i −0.410024 + 0.710182i
\(123\) 0.316188 + 1.79319i 0.0285097 + 0.161687i
\(124\) −0.264718 1.50129i −0.0237724 0.134820i
\(125\) 3.86523 6.69477i 0.345717 0.598799i
\(126\) −0.358173 0.620373i −0.0319086 0.0552672i
\(127\) 1.83438 1.53923i 0.162775 0.136584i −0.557762 0.830001i \(-0.688340\pi\)
0.720537 + 0.693417i \(0.243895\pi\)
\(128\) −9.75974 + 3.55226i −0.862648 + 0.313978i
\(129\) −2.89168 1.05249i −0.254598 0.0926663i
\(130\) −0.361639 0.303451i −0.0317178 0.0266144i
\(131\) 1.22065 6.92263i 0.106648 0.604833i −0.883901 0.467674i \(-0.845092\pi\)
0.990549 0.137158i \(-0.0437969\pi\)
\(132\) 5.29611 0.460967
\(133\) 0.393779 + 4.34108i 0.0341450 + 0.376419i
\(134\) 5.22507 0.451377
\(135\) −0.144177 + 0.817669i −0.0124088 + 0.0703738i
\(136\) −0.630570 0.529111i −0.0540709 0.0453709i
\(137\) 8.84518 + 3.21938i 0.755695 + 0.275050i 0.691000 0.722855i \(-0.257170\pi\)
0.0646948 + 0.997905i \(0.479393\pi\)
\(138\) 2.38867 0.869404i 0.203337 0.0740086i
\(139\) −9.60343 + 8.05824i −0.814553 + 0.683491i −0.951690 0.307061i \(-0.900654\pi\)
0.137137 + 0.990552i \(0.456210\pi\)
\(140\) −0.617253 1.06911i −0.0521674 0.0903566i
\(141\) −0.915248 + 1.58526i −0.0770778 + 0.133503i
\(142\) 1.63271 + 9.25956i 0.137014 + 0.777045i
\(143\) 0.490945 + 2.78428i 0.0410548 + 0.232834i
\(144\) −0.592210 + 1.02574i −0.0493509 + 0.0854782i
\(145\) −1.78480 3.09137i −0.148220 0.256725i
\(146\) 2.11548 1.77510i 0.175079 0.146908i
\(147\) 0.939693 0.342020i 0.0775045 0.0282093i
\(148\) 0.252531 + 0.0919138i 0.0207579 + 0.00755527i
\(149\) 5.12684 + 4.30193i 0.420007 + 0.352428i 0.828166 0.560483i \(-0.189385\pi\)
−0.408159 + 0.912911i \(0.633829\pi\)
\(150\) −0.536208 + 3.04099i −0.0437812 + 0.248296i
\(151\) 12.6254 1.02744 0.513722 0.857957i \(-0.328266\pi\)
0.513722 + 0.857957i \(0.328266\pi\)
\(152\) −8.89860 + 6.27335i −0.721772 + 0.508836i
\(153\) −0.329552 −0.0266427
\(154\) 0.443080 2.51283i 0.0357044 0.202490i
\(155\) 0.652119 + 0.547193i 0.0523795 + 0.0439516i
\(156\) −1.10898 0.403637i −0.0887898 0.0323168i
\(157\) −21.4093 + 7.79235i −1.70865 + 0.621897i −0.996763 0.0803973i \(-0.974381\pi\)
−0.711886 + 0.702295i \(0.752159\pi\)
\(158\) 3.18273 2.67063i 0.253205 0.212464i
\(159\) 2.85191 + 4.93965i 0.226171 + 0.391740i
\(160\) 2.42610 4.20213i 0.191800 0.332207i
\(161\) 0.616194 + 3.49461i 0.0485629 + 0.275414i
\(162\) −0.124392 0.705462i −0.00977316 0.0554264i
\(163\) 1.28984 2.23408i 0.101028 0.174986i −0.811080 0.584935i \(-0.801120\pi\)
0.912109 + 0.409949i \(0.134453\pi\)
\(164\) −1.35367 2.34462i −0.105704 0.183084i
\(165\) −2.26553 + 1.90101i −0.176371 + 0.147993i
\(166\) 6.43330 2.34153i 0.499321 0.181738i
\(167\) −2.63471 0.958954i −0.203880 0.0742061i 0.238062 0.971250i \(-0.423488\pi\)
−0.441941 + 0.897044i \(0.645710\pi\)
\(168\) 1.91342 + 1.60555i 0.147623 + 0.123871i
\(169\) −2.14803 + 12.1821i −0.165233 + 0.937082i
\(170\) 0.196007 0.0150331
\(171\) −1.11470 + 4.21396i −0.0852435 + 0.322249i
\(172\) 4.57543 0.348873
\(173\) 1.28569 7.29151i 0.0977492 0.554363i −0.896121 0.443810i \(-0.853627\pi\)
0.993870 0.110553i \(-0.0352623\pi\)
\(174\) 2.35923 + 1.97963i 0.178853 + 0.150075i
\(175\) −4.05067 1.47432i −0.306202 0.111448i
\(176\) −3.96444 + 1.44294i −0.298831 + 0.108765i
\(177\) −5.15992 + 4.32969i −0.387843 + 0.325439i
\(178\) 0.460086 + 0.796892i 0.0344849 + 0.0597296i
\(179\) −6.35320 + 11.0041i −0.474860 + 0.822482i −0.999585 0.0287895i \(-0.990835\pi\)
0.524725 + 0.851272i \(0.324168\pi\)
\(180\) −0.214370 1.21575i −0.0159782 0.0906167i
\(181\) 2.84975 + 16.1618i 0.211820 + 1.20129i 0.886339 + 0.463036i \(0.153240\pi\)
−0.674519 + 0.738258i \(0.735649\pi\)
\(182\) −0.284292 + 0.492408i −0.0210731 + 0.0364997i
\(183\) −6.32218 10.9503i −0.467349 0.809472i
\(184\) −6.78980 + 5.69732i −0.500551 + 0.420012i
\(185\) −0.141018 + 0.0513263i −0.0103678 + 0.00377359i
\(186\) −0.690168 0.251201i −0.0506056 0.0184189i
\(187\) −0.899223 0.754538i −0.0657577 0.0551773i
\(188\) 0.472613 2.68032i 0.0344689 0.195483i
\(189\) 1.00000 0.0727393
\(190\) 0.662992 2.50633i 0.0480985 0.181828i
\(191\) −6.39701 −0.462871 −0.231436 0.972850i \(-0.574342\pi\)
−0.231436 + 0.972850i \(0.574342\pi\)
\(192\) −0.315606 + 1.78989i −0.0227769 + 0.129174i
\(193\) −13.9307 11.6893i −1.00276 0.841412i −0.0153914 0.999882i \(-0.504899\pi\)
−0.987364 + 0.158470i \(0.949344\pi\)
\(194\) 5.53406 + 2.01423i 0.397323 + 0.144614i
\(195\) 0.619276 0.225398i 0.0443473 0.0161411i
\(196\) −1.13899 + 0.955728i −0.0813566 + 0.0682663i
\(197\) 0.895310 + 1.55072i 0.0637882 + 0.110484i 0.896156 0.443740i \(-0.146348\pi\)
−0.832368 + 0.554224i \(0.813015\pi\)
\(198\) 1.27580 2.20975i 0.0906671 0.157040i
\(199\) 2.02733 + 11.4975i 0.143713 + 0.815039i 0.968391 + 0.249436i \(0.0802452\pi\)
−0.824678 + 0.565603i \(0.808644\pi\)
\(200\) −1.86968 10.6035i −0.132206 0.749778i
\(201\) −3.64703 + 6.31685i −0.257242 + 0.445556i
\(202\) −3.18341 5.51382i −0.223984 0.387951i
\(203\) −3.29343 + 2.76352i −0.231153 + 0.193961i
\(204\) 0.460444 0.167588i 0.0322375 0.0117335i
\(205\) 1.42065 + 0.517074i 0.0992225 + 0.0361140i
\(206\) 10.3276 + 8.66585i 0.719555 + 0.603778i
\(207\) −0.616194 + 3.49461i −0.0428285 + 0.242892i
\(208\) 0.940109 0.0651849
\(209\) −12.6898 + 8.94609i −0.877774 + 0.618814i
\(210\) −0.594769 −0.0410430
\(211\) −1.03030 + 5.84313i −0.0709288 + 0.402257i 0.928586 + 0.371117i \(0.121025\pi\)
−0.999515 + 0.0311405i \(0.990086\pi\)
\(212\) −6.49660 5.45130i −0.446188 0.374397i
\(213\) −12.3340 4.48919i −0.845109 0.307595i
\(214\) 4.00391 1.45731i 0.273702 0.0996193i
\(215\) −1.95724 + 1.64232i −0.133483 + 0.112005i
\(216\) 1.24889 + 2.16315i 0.0849765 + 0.147184i
\(217\) 0.512645 0.887927i 0.0348006 0.0602764i
\(218\) −0.665091 3.77192i −0.0450456 0.255466i
\(219\) 0.669427 + 3.79651i 0.0452357 + 0.256544i
\(220\) 2.19863 3.80815i 0.148232 0.256745i
\(221\) 0.130788 + 0.226531i 0.00879772 + 0.0152381i
\(222\) 0.0991833 0.0832247i 0.00665675 0.00558567i
\(223\) −7.90600 + 2.87755i −0.529425 + 0.192695i −0.592881 0.805290i \(-0.702010\pi\)
0.0634568 + 0.997985i \(0.479787\pi\)
\(224\) −5.49159 1.99878i −0.366922 0.133549i
\(225\) −3.30213 2.77082i −0.220142 0.184721i
\(226\) −2.55118 + 14.4685i −0.169702 + 0.962430i
\(227\) 23.1566 1.53696 0.768478 0.639876i \(-0.221014\pi\)
0.768478 + 0.639876i \(0.221014\pi\)
\(228\) −0.585491 6.45453i −0.0387751 0.427461i
\(229\) −13.5968 −0.898499 −0.449250 0.893406i \(-0.648309\pi\)
−0.449250 + 0.893406i \(0.648309\pi\)
\(230\) 0.366494 2.07849i 0.0241659 0.137051i
\(231\) 2.72862 + 2.28959i 0.179530 + 0.150644i
\(232\) −10.0910 3.67284i −0.662509 0.241134i
\(233\) 11.3144 4.11810i 0.741229 0.269785i 0.0563190 0.998413i \(-0.482064\pi\)
0.684910 + 0.728627i \(0.259841\pi\)
\(234\) −0.435561 + 0.365479i −0.0284735 + 0.0238921i
\(235\) 0.759915 + 1.31621i 0.0495714 + 0.0858601i
\(236\) 5.00756 8.67335i 0.325964 0.564587i
\(237\) 1.00715 + 5.71183i 0.0654214 + 0.371023i
\(238\) −0.0409936 0.232486i −0.00265722 0.0150699i
\(239\) 15.0852 26.1283i 0.975777 1.69010i 0.298432 0.954431i \(-0.403536\pi\)
0.677345 0.735665i \(-0.263130\pi\)
\(240\) 0.491702 + 0.851653i 0.0317392 + 0.0549740i
\(241\) −9.23583 + 7.74978i −0.594932 + 0.499207i −0.889812 0.456327i \(-0.849165\pi\)
0.294880 + 0.955534i \(0.404720\pi\)
\(242\) 1.13600 0.413470i 0.0730247 0.0265788i
\(243\) 0.939693 + 0.342020i 0.0602813 + 0.0219406i
\(244\) 14.4018 + 12.0846i 0.921983 + 0.773636i
\(245\) 0.144177 0.817669i 0.00921114 0.0522390i
\(246\) −1.30436 −0.0831629
\(247\) 3.33902 0.906135i 0.212457 0.0576560i
\(248\) 2.56096 0.162621
\(249\) −1.65957 + 9.41190i −0.105171 + 0.596455i
\(250\) 4.24211 + 3.55955i 0.268294 + 0.225126i
\(251\) 10.1406 + 3.69087i 0.640067 + 0.232965i 0.641607 0.767033i \(-0.278268\pi\)
−0.00154001 + 0.999999i \(0.500490\pi\)
\(252\) −1.39718 + 0.508532i −0.0880142 + 0.0320345i
\(253\) −9.68258 + 8.12465i −0.608739 + 0.510792i
\(254\) 0.857685 + 1.48555i 0.0538159 + 0.0932119i
\(255\) −0.136811 + 0.236963i −0.00856742 + 0.0148392i
\(256\) −1.92316 10.9068i −0.120198 0.681674i
\(257\) −0.620077 3.51663i −0.0386794 0.219362i 0.959341 0.282249i \(-0.0910803\pi\)
−0.998021 + 0.0628871i \(0.979969\pi\)
\(258\) 1.10219 1.90905i 0.0686195 0.118852i
\(259\) 0.0903716 + 0.156528i 0.00561542 + 0.00972619i
\(260\) −0.750619 + 0.629844i −0.0465514 + 0.0390613i
\(261\) −4.03999 + 1.47044i −0.250069 + 0.0910177i
\(262\) 4.73181 + 1.72224i 0.292333 + 0.106400i
\(263\) 3.41991 + 2.86964i 0.210881 + 0.176950i 0.742110 0.670278i \(-0.233825\pi\)
−0.531229 + 0.847228i \(0.678270\pi\)
\(264\) −1.54495 + 8.76187i −0.0950853 + 0.539256i
\(265\) 4.73578 0.290917
\(266\) −3.11145 0.262199i −0.190775 0.0160764i
\(267\) −1.28454 −0.0786124
\(268\) 1.88325 10.6804i 0.115038 0.652410i
\(269\) −1.18081 0.990819i −0.0719954 0.0604113i 0.606080 0.795404i \(-0.292741\pi\)
−0.678075 + 0.734993i \(0.737186\pi\)
\(270\) −0.558900 0.203423i −0.0340136 0.0123799i
\(271\) 27.7161 10.0878i 1.68363 0.612791i 0.689830 0.723971i \(-0.257685\pi\)
0.993800 + 0.111180i \(0.0354629\pi\)
\(272\) −0.299009 + 0.250898i −0.0181301 + 0.0152129i
\(273\) −0.396865 0.687390i −0.0240193 0.0416027i
\(274\) −3.37142 + 5.83948i −0.203675 + 0.352776i
\(275\) −2.66625 15.1210i −0.160781 0.911834i
\(276\) −0.916188 5.19596i −0.0551481 0.312760i
\(277\) −10.7350 + 18.5936i −0.645006 + 1.11718i 0.339294 + 0.940680i \(0.389812\pi\)
−0.984300 + 0.176503i \(0.943522\pi\)
\(278\) −4.49019 7.77724i −0.269304 0.466448i
\(279\) 0.785418 0.659044i 0.0470217 0.0394559i
\(280\) 1.94880 0.709306i 0.116463 0.0423891i
\(281\) 23.8677 + 8.68714i 1.42383 + 0.518232i 0.935156 0.354235i \(-0.115259\pi\)
0.488673 + 0.872467i \(0.337481\pi\)
\(282\) −1.00449 0.842866i −0.0598164 0.0501919i
\(283\) −2.32682 + 13.1960i −0.138315 + 0.784423i 0.834179 + 0.551494i \(0.185942\pi\)
−0.972494 + 0.232929i \(0.925169\pi\)
\(284\) 19.5157 1.15804
\(285\) 2.56727 + 2.55091i 0.152072 + 0.151103i
\(286\) −2.02528 −0.119757
\(287\) 0.316188 1.79319i 0.0186640 0.105849i
\(288\) −4.47679 3.75647i −0.263797 0.221352i
\(289\) 15.8727 + 5.77720i 0.933689 + 0.339835i
\(290\) 2.40286 0.874570i 0.141101 0.0513565i
\(291\) −6.29782 + 5.28449i −0.369185 + 0.309783i
\(292\) −2.86596 4.96399i −0.167718 0.290495i
\(293\) −4.76144 + 8.24706i −0.278166 + 0.481798i −0.970929 0.239367i \(-0.923060\pi\)
0.692763 + 0.721166i \(0.256393\pi\)
\(294\) 0.124392 + 0.705462i 0.00725469 + 0.0411434i
\(295\) 0.971148 + 5.50766i 0.0565424 + 0.320668i
\(296\) −0.225729 + 0.390974i −0.0131202 + 0.0227249i
\(297\) 1.78098 + 3.08475i 0.103343 + 0.178996i
\(298\) −3.67259 + 3.08167i −0.212747 + 0.178516i
\(299\) 2.64671 0.963322i 0.153063 0.0557104i
\(300\) 6.02273 + 2.19210i 0.347723 + 0.126561i
\(301\) 2.35732 + 1.97803i 0.135874 + 0.114012i
\(302\) −1.57050 + 8.90677i −0.0903723 + 0.512527i
\(303\) 8.88791 0.510597
\(304\) 2.19682 + 4.67206i 0.125997 + 0.267961i
\(305\) −10.4984 −0.601137
\(306\) 0.0409936 0.232486i 0.00234345 0.0132904i
\(307\) 18.0352 + 15.1333i 1.02932 + 0.863705i 0.990770 0.135552i \(-0.0432807\pi\)
0.0385532 + 0.999257i \(0.487725\pi\)
\(308\) −4.97671 1.81138i −0.283575 0.103213i
\(309\) −17.6851 + 6.43684i −1.00607 + 0.366179i
\(310\) −0.467142 + 0.391979i −0.0265319 + 0.0222629i
\(311\) −5.07975 8.79838i −0.288046 0.498910i 0.685297 0.728264i \(-0.259672\pi\)
−0.973343 + 0.229353i \(0.926339\pi\)
\(312\) 0.991284 1.71695i 0.0561204 0.0972034i
\(313\) −0.0756136 0.428826i −0.00427393 0.0242387i 0.982596 0.185754i \(-0.0594729\pi\)
−0.986870 + 0.161516i \(0.948362\pi\)
\(314\) −2.83406 16.0728i −0.159935 0.907039i
\(315\) 0.415142 0.719046i 0.0233906 0.0405137i
\(316\) −4.31182 7.46830i −0.242559 0.420125i
\(317\) −10.8789 + 9.12850i −0.611021 + 0.512708i −0.894967 0.446133i \(-0.852801\pi\)
0.283946 + 0.958840i \(0.408357\pi\)
\(318\) −3.83949 + 1.39746i −0.215308 + 0.0783657i
\(319\) −14.3903 5.23764i −0.805703 0.293252i
\(320\) 1.15599 + 0.969993i 0.0646219 + 0.0542242i
\(321\) −1.03287 + 5.85771i −0.0576493 + 0.326946i
\(322\) −2.54197 −0.141658
\(323\) −0.820168 + 1.17933i −0.0456354 + 0.0656194i
\(324\) −1.48685 −0.0826028
\(325\) −0.594133 + 3.36949i −0.0329566 + 0.186906i
\(326\) 1.41561 + 1.18784i 0.0784034 + 0.0657883i
\(327\) 5.02428 + 1.82869i 0.277843 + 0.101127i
\(328\) 4.27382 1.55554i 0.235982 0.0858905i
\(329\) 1.40224 1.17662i 0.0773081 0.0648692i
\(330\) −1.05927 1.83472i −0.0583111 0.100998i
\(331\) 10.6861 18.5089i 0.587361 1.01734i −0.407216 0.913332i \(-0.633500\pi\)
0.994577 0.104007i \(-0.0331664\pi\)
\(332\) −2.46753 13.9941i −0.135424 0.768025i
\(333\) 0.0313857 + 0.177997i 0.00171993 + 0.00975420i
\(334\) 1.00424 1.73940i 0.0549497 0.0951757i
\(335\) 3.02807 + 5.24477i 0.165441 + 0.286552i
\(336\) 0.907319 0.761331i 0.0494983 0.0415340i
\(337\) −11.2366 + 4.08978i −0.612095 + 0.222785i −0.629420 0.777065i \(-0.716707\pi\)
0.0173245 + 0.999850i \(0.494485\pi\)
\(338\) −8.32679 3.03070i −0.452918 0.164849i
\(339\) −15.7110 13.1831i −0.853303 0.716007i
\(340\) 0.0706459 0.400653i 0.00383131 0.0217285i
\(341\) 3.65205 0.197769
\(342\) −2.83413 1.31056i −0.153252 0.0708672i
\(343\) −1.00000 −0.0539949
\(344\) −1.33472 + 7.56958i −0.0719633 + 0.408124i
\(345\) 2.25698 + 1.89383i 0.121512 + 0.101960i
\(346\) 4.98396 + 1.81401i 0.267939 + 0.0975219i
\(347\) 29.1466 10.6085i 1.56467 0.569493i 0.592869 0.805299i \(-0.297995\pi\)
0.971800 + 0.235806i \(0.0757730\pi\)
\(348\) 4.89684 4.10893i 0.262498 0.220262i
\(349\) −9.37470 16.2375i −0.501816 0.869171i −0.999998 0.00209848i \(-0.999332\pi\)
0.498182 0.867073i \(-0.334001\pi\)
\(350\) 1.54395 2.67420i 0.0825276 0.142942i
\(351\) −0.137830 0.781671i −0.00735680 0.0417225i
\(352\) −3.61470 20.5000i −0.192664 1.09265i
\(353\) 15.8612 27.4724i 0.844206 1.46221i −0.0421025 0.999113i \(-0.513406\pi\)
0.886309 0.463095i \(-0.153261\pi\)
\(354\) −2.41258 4.17871i −0.128227 0.222096i
\(355\) −8.34828 + 7.00504i −0.443081 + 0.371789i
\(356\) 1.79473 0.653229i 0.0951206 0.0346211i
\(357\) 0.309677 + 0.112713i 0.0163899 + 0.00596542i
\(358\) −6.97266 5.85076i −0.368517 0.309222i
\(359\) 1.65301 9.37471i 0.0872427 0.494778i −0.909607 0.415469i \(-0.863617\pi\)
0.996850 0.0793092i \(-0.0252714\pi\)
\(360\) 2.07387 0.109303
\(361\) 12.3058 + 14.4765i 0.647671 + 0.761920i
\(362\) −11.7560 −0.617881
\(363\) −0.293049 + 1.66196i −0.0153811 + 0.0872304i
\(364\) 0.904052 + 0.758590i 0.0473852 + 0.0397609i
\(365\) 3.00777 + 1.09474i 0.157434 + 0.0573013i
\(366\) 8.51148 3.09792i 0.444902 0.161931i
\(367\) 9.59761 8.05335i 0.500991 0.420381i −0.356955 0.934122i \(-0.616185\pi\)
0.857946 + 0.513740i \(0.171740\pi\)
\(368\) 2.10147 + 3.63986i 0.109547 + 0.189741i
\(369\) 0.910427 1.57691i 0.0473949 0.0820904i
\(370\) −0.0186673 0.105867i −0.000970466 0.00550378i
\(371\) −0.990457 5.61716i −0.0514220 0.291628i
\(372\) −0.762226 + 1.32021i −0.0395196 + 0.0684499i
\(373\) −11.1924 19.3858i −0.579520 1.00376i −0.995534 0.0943995i \(-0.969907\pi\)
0.416015 0.909358i \(-0.363426\pi\)
\(374\) 0.644154 0.540510i 0.0333084 0.0279491i
\(375\) −7.26425 + 2.64397i −0.375125 + 0.136534i
\(376\) 4.29645 + 1.56378i 0.221573 + 0.0806459i
\(377\) 2.61409 + 2.19348i 0.134633 + 0.112970i
\(378\) −0.124392 + 0.705462i −0.00639804 + 0.0362851i
\(379\) 14.9865 0.769807 0.384904 0.922957i \(-0.374235\pi\)
0.384904 + 0.922957i \(0.374235\pi\)
\(380\) −4.88416 2.25855i −0.250552 0.115861i
\(381\) −2.39461 −0.122680
\(382\) 0.795737 4.51285i 0.0407135 0.230898i
\(383\) −19.7426 16.5660i −1.00880 0.846483i −0.0206201 0.999787i \(-0.506564\pi\)
−0.988179 + 0.153304i \(0.951008\pi\)
\(384\) 9.75974 + 3.55226i 0.498050 + 0.181275i
\(385\) 2.77908 1.01150i 0.141635 0.0515510i
\(386\) 9.97921 8.37355i 0.507928 0.426202i
\(387\) 1.53863 + 2.66499i 0.0782131 + 0.135469i
\(388\) 6.11185 10.5860i 0.310282 0.537425i
\(389\) −3.55356 20.1533i −0.180173 1.02181i −0.932002 0.362453i \(-0.881939\pi\)
0.751829 0.659358i \(-0.229172\pi\)
\(390\) 0.0819769 + 0.464914i 0.00415106 + 0.0235418i
\(391\) −0.584711 + 1.01275i −0.0295701 + 0.0512169i
\(392\) −1.24889 2.16315i −0.0630787 0.109255i
\(393\) −5.38485 + 4.51842i −0.271630 + 0.227924i
\(394\) −1.20535 + 0.438710i −0.0607245 + 0.0221019i
\(395\) 4.52518 + 1.64703i 0.227687 + 0.0828711i
\(396\) −4.05705 3.40427i −0.203875 0.171071i
\(397\) −4.71445 + 26.7370i −0.236611 + 1.34189i 0.602582 + 0.798057i \(0.294139\pi\)
−0.839193 + 0.543833i \(0.816973\pi\)
\(398\) −8.36326 −0.419212
\(399\) 2.48874 3.57857i 0.124593 0.179153i
\(400\) −5.10560 −0.255280
\(401\) 3.43401 19.4752i 0.171486 0.972547i −0.770636 0.637276i \(-0.780061\pi\)
0.942122 0.335271i \(-0.108828\pi\)
\(402\) −4.00263 3.35861i −0.199633 0.167512i
\(403\) −0.764724 0.278337i −0.0380936 0.0138650i
\(404\) −12.4180 + 4.51979i −0.617820 + 0.224868i
\(405\) 0.636034 0.533696i 0.0316048 0.0265196i
\(406\) −1.53988 2.66715i −0.0764230 0.132368i
\(407\) −0.321901 + 0.557548i −0.0159560 + 0.0276366i
\(408\) 0.142939 + 0.810645i 0.00707652 + 0.0401329i
\(409\) −5.20713 29.5311i −0.257476 1.46022i −0.789637 0.613575i \(-0.789731\pi\)
0.532161 0.846643i \(-0.321380\pi\)
\(410\) −0.541494 + 0.937895i −0.0267425 + 0.0463193i
\(411\) −4.70642 8.15176i −0.232151 0.402097i
\(412\) 21.4359 17.9869i 1.05607 0.886150i
\(413\) 6.32958 2.30378i 0.311458 0.113362i
\(414\) −2.38867 0.869404i −0.117397 0.0427289i
\(415\) 6.07863 + 5.10058i 0.298388 + 0.250378i
\(416\) −0.805481 + 4.56811i −0.0394919 + 0.223970i
\(417\) 12.5364 0.613910
\(418\) −4.73262 10.0650i −0.231480 0.492296i
\(419\) −33.8826 −1.65528 −0.827638 0.561263i \(-0.810316\pi\)
−0.827638 + 0.561263i \(0.810316\pi\)
\(420\) −0.214370 + 1.21575i −0.0104602 + 0.0593226i
\(421\) −24.4509 20.5168i −1.19167 0.999927i −0.999829 0.0185001i \(-0.994111\pi\)
−0.191838 0.981427i \(-0.561445\pi\)
\(422\) −3.99394 1.45368i −0.194422 0.0707639i
\(423\) 1.72010 0.626066i 0.0836343 0.0304404i
\(424\) 10.9138 9.15774i 0.530020 0.444739i
\(425\) −0.710288 1.23026i −0.0344540 0.0596761i
\(426\) 4.70120 8.14272i 0.227774 0.394516i
\(427\) 2.19567 + 12.4523i 0.106256 + 0.602607i
\(428\) −1.53573 8.70953i −0.0742321 0.420991i
\(429\) 1.41362 2.44846i 0.0682501 0.118213i
\(430\) −0.915131 1.58505i −0.0441315 0.0764381i
\(431\) −21.0811 + 17.6892i −1.01544 + 0.852058i −0.989048 0.147594i \(-0.952847\pi\)
−0.0263946 + 0.999652i \(0.508403\pi\)
\(432\) 1.11299 0.405096i 0.0535488 0.0194902i
\(433\) −12.4255 4.52249i −0.597129 0.217337i 0.0257330 0.999669i \(-0.491808\pi\)
−0.622862 + 0.782332i \(0.714030\pi\)
\(434\) 0.562630 + 0.472103i 0.0270071 + 0.0226617i
\(435\) −0.619856 + 3.51538i −0.0297198 + 0.168550i
\(436\) −7.94978 −0.380726
\(437\) 10.9722 + 10.9023i 0.524871 + 0.521526i
\(438\) −2.76157 −0.131953
\(439\) −4.72160 + 26.7775i −0.225350 + 1.27802i 0.636666 + 0.771140i \(0.280313\pi\)
−0.862016 + 0.506881i \(0.830798\pi\)
\(440\) 5.65881 + 4.74831i 0.269773 + 0.226367i
\(441\) −0.939693 0.342020i −0.0447473 0.0162867i
\(442\) −0.176078 + 0.0640871i −0.00837516 + 0.00304831i
\(443\) −28.4882 + 23.9045i −1.35352 + 1.13574i −0.375591 + 0.926786i \(0.622560\pi\)
−0.977926 + 0.208950i \(0.932995\pi\)
\(444\) −0.134369 0.232734i −0.00637687 0.0110451i
\(445\) −0.533265 + 0.923642i −0.0252792 + 0.0437848i
\(446\) −1.04656 5.93533i −0.0495560 0.281046i
\(447\) −1.16216 6.59094i −0.0549683 0.311741i
\(448\) 0.908751 1.57400i 0.0429344 0.0743646i
\(449\) 15.4209 + 26.7097i 0.727756 + 1.26051i 0.957829 + 0.287338i \(0.0927701\pi\)
−0.230073 + 0.973173i \(0.573897\pi\)
\(450\) 2.36547 1.98486i 0.111509 0.0935674i
\(451\) 6.09468 2.21828i 0.286987 0.104455i
\(452\) 28.6551 + 10.4296i 1.34782 + 0.490568i
\(453\) −9.67164 8.11547i −0.454413 0.381298i
\(454\) −2.88049 + 16.3361i −0.135188 + 0.766691i
\(455\) −0.659020 −0.0308953
\(456\) 10.8492 + 0.914248i 0.508058 + 0.0428136i
\(457\) 3.41452 0.159725 0.0798623 0.996806i \(-0.474552\pi\)
0.0798623 + 0.996806i \(0.474552\pi\)
\(458\) 1.69133 9.59200i 0.0790306 0.448205i
\(459\) 0.252451 + 0.211832i 0.0117834 + 0.00988747i
\(460\) −4.11649 1.49828i −0.191932 0.0698576i
\(461\) −19.7611 + 7.19246i −0.920367 + 0.334986i −0.758385 0.651807i \(-0.774011\pi\)
−0.161983 + 0.986794i \(0.551789\pi\)
\(462\) −1.95464 + 1.64014i −0.0909379 + 0.0763060i
\(463\) −16.3924 28.3924i −0.761818 1.31951i −0.941913 0.335857i \(-0.890974\pi\)
0.180095 0.983649i \(-0.442359\pi\)
\(464\) −2.54607 + 4.40992i −0.118198 + 0.204726i
\(465\) −0.147823 0.838348i −0.00685515 0.0388775i
\(466\) 1.49774 + 8.49412i 0.0693816 + 0.393483i
\(467\) −10.4454 + 18.0920i −0.483357 + 0.837199i −0.999817 0.0191122i \(-0.993916\pi\)
0.516460 + 0.856311i \(0.327249\pi\)
\(468\) 0.590078 + 1.02205i 0.0272764 + 0.0472441i
\(469\) 5.58758 4.68853i 0.258010 0.216496i
\(470\) −1.02306 + 0.372365i −0.0471905 + 0.0171759i
\(471\) 21.4093 + 7.79235i 0.986489 + 0.359053i
\(472\) 12.8884 + 10.8146i 0.593236 + 0.497784i
\(473\) −1.90338 + 10.7946i −0.0875173 + 0.496336i
\(474\) −4.15476 −0.190835
\(475\) −18.1337 + 4.92109i −0.832032 + 0.225795i
\(476\) −0.489994 −0.0224588
\(477\) 0.990457 5.61716i 0.0453499 0.257192i
\(478\) 16.5560 + 13.8922i 0.757255 + 0.635412i
\(479\) 15.4838 + 5.63564i 0.707473 + 0.257499i 0.670598 0.741821i \(-0.266038\pi\)
0.0368748 + 0.999320i \(0.488260\pi\)
\(480\) −4.55958 + 1.65955i −0.208115 + 0.0757477i
\(481\) 0.109898 0.0922151i 0.00501090 0.00420465i
\(482\) −4.31831 7.47954i −0.196694 0.340684i
\(483\) 1.77426 3.07311i 0.0807317 0.139831i
\(484\) −0.435719 2.47109i −0.0198054 0.112322i
\(485\) 1.18531 + 6.72223i 0.0538222 + 0.305241i
\(486\) −0.358173 + 0.620373i −0.0162470 + 0.0281407i
\(487\) −2.46421 4.26813i −0.111664 0.193407i 0.804777 0.593577i \(-0.202285\pi\)
−0.916441 + 0.400169i \(0.868951\pi\)
\(488\) −24.1939 + 20.3011i −1.09521 + 0.918988i
\(489\) −2.42411 + 0.882306i −0.109622 + 0.0398992i
\(490\) 0.558900 + 0.203423i 0.0252485 + 0.00918972i
\(491\) 23.4418 + 19.6700i 1.05791 + 0.887696i 0.993904 0.110253i \(-0.0351662\pi\)
0.0640112 + 0.997949i \(0.479611\pi\)
\(492\) −0.470124 + 2.66620i −0.0211948 + 0.120202i
\(493\) −1.41683 −0.0638109
\(494\) 0.223897 + 2.46827i 0.0100736 + 0.111053i
\(495\) 2.95744 0.132927
\(496\) 0.210874 1.19593i 0.00946852 0.0536986i
\(497\) 10.0547 + 8.43693i 0.451017 + 0.378448i
\(498\) −6.43330 2.34153i −0.288283 0.104927i
\(499\) 30.2753 11.0193i 1.35531 0.493292i 0.440708 0.897650i \(-0.354727\pi\)
0.914601 + 0.404359i \(0.132505\pi\)
\(500\) 8.80494 7.38822i 0.393769 0.330411i
\(501\) 1.40190 + 2.42816i 0.0626322 + 0.108482i
\(502\) −3.86517 + 6.69468i −0.172511 + 0.298798i
\(503\) −0.424412 2.40696i −0.0189236 0.107321i 0.973883 0.227051i \(-0.0729083\pi\)
−0.992807 + 0.119730i \(0.961797\pi\)
\(504\) −0.433736 2.45984i −0.0193202 0.109570i
\(505\) 3.68974 6.39082i 0.164191 0.284388i
\(506\) −4.52720 7.84134i −0.201259 0.348590i
\(507\) 9.47596 7.95128i 0.420842 0.353129i
\(508\) 3.34571 1.21774i 0.148442 0.0540284i
\(509\) −11.9167 4.33731i −0.528196 0.192248i 0.0641365 0.997941i \(-0.479571\pi\)
−0.592333 + 0.805693i \(0.701793\pi\)
\(510\) −0.150150 0.125991i −0.00664877 0.00557898i
\(511\) 0.669427 3.79651i 0.0296137 0.167948i
\(512\) −12.8387 −0.567394
\(513\) 3.56259 2.51156i 0.157292 0.110888i
\(514\) 2.55798 0.112828
\(515\) −2.71342 + 15.3886i −0.119568 + 0.678102i
\(516\) −3.50498 2.94103i −0.154298 0.129472i
\(517\) 6.12695 + 2.23003i 0.269463 + 0.0980765i
\(518\) −0.121666 + 0.0442829i −0.00534571 + 0.00194568i
\(519\) −5.67179 + 4.75920i −0.248964 + 0.208905i
\(520\) −0.823046 1.42556i −0.0360930 0.0625148i
\(521\) −5.77167 + 9.99683i −0.252861 + 0.437969i −0.964312 0.264767i \(-0.914705\pi\)
0.711451 + 0.702736i \(0.248038\pi\)
\(522\) −0.534795 3.03297i −0.0234073 0.132750i
\(523\) 0.0353734 + 0.200613i 0.00154677 + 0.00877218i 0.985571 0.169260i \(-0.0541379\pi\)
−0.984025 + 0.178033i \(0.943027\pi\)
\(524\) 5.22585 9.05143i 0.228292 0.395414i
\(525\) 2.15531 + 3.73312i 0.0940657 + 0.162926i
\(526\) −2.44984 + 2.05566i −0.106818 + 0.0896309i
\(527\) 0.317509 0.115564i 0.0138309 0.00503404i
\(528\) 3.96444 + 1.44294i 0.172530 + 0.0627958i
\(529\) −7.97298 6.69013i −0.346651 0.290875i
\(530\) −0.589093 + 3.34091i −0.0255886 + 0.145120i
\(531\) 6.73580 0.292309
\(532\) −1.65740 + 6.26552i −0.0718573 + 0.271645i
\(533\) −1.44527 −0.0626014
\(534\) 0.159786 0.906193i 0.00691462 0.0392148i
\(535\) 3.78318 + 3.17446i 0.163561 + 0.137244i
\(536\) 17.1203 + 6.23127i 0.739484 + 0.269150i
\(537\) 11.9401 4.34584i 0.515254 0.187537i
\(538\) 0.845869 0.709768i 0.0364680 0.0306003i
\(539\) −1.78098 3.08475i −0.0767124 0.132870i
\(540\) −0.617253 + 1.06911i −0.0265623 + 0.0460073i
\(541\) 6.92816 + 39.2915i 0.297865 + 1.68928i 0.655325 + 0.755347i \(0.272532\pi\)
−0.357460 + 0.933928i \(0.616357\pi\)
\(542\) 3.66892 + 20.8075i 0.157594 + 0.893758i
\(543\) 8.20554 14.2124i 0.352133 0.609913i
\(544\) −0.962956 1.66789i −0.0412864 0.0715101i
\(545\) 3.40070 2.85353i 0.145670 0.122232i
\(546\) 0.534294 0.194467i 0.0228657 0.00832243i
\(547\) −5.38208 1.95892i −0.230121 0.0837572i 0.224386 0.974500i \(-0.427962\pi\)
−0.454507 + 0.890743i \(0.650185\pi\)
\(548\) 10.7212 + 8.99612i 0.457985 + 0.384295i
\(549\) −2.19567 + 12.4523i −0.0937089 + 0.531450i
\(550\) 10.9990 0.468999
\(551\) −4.79241 + 18.1169i −0.204164 + 0.771807i
\(552\) 8.86346 0.377254
\(553\) 1.00715 5.71183i 0.0428284 0.242892i
\(554\) −11.7818 9.88606i −0.500559 0.420019i
\(555\) 0.141018 + 0.0513263i 0.00598588 + 0.00217868i
\(556\) −17.5156 + 6.37516i −0.742828 + 0.270367i
\(557\) 17.7139 14.8637i 0.750563 0.629797i −0.185089 0.982722i \(-0.559257\pi\)
0.935652 + 0.352925i \(0.114813\pi\)
\(558\) 0.367231 + 0.636062i 0.0155461 + 0.0269267i
\(559\) 1.22126 2.11528i 0.0516537 0.0894668i
\(560\) −0.170766 0.968464i −0.00721620 0.0409251i
\(561\) 0.203837 + 1.15602i 0.00860602 + 0.0488072i
\(562\) −9.09741 + 15.7572i −0.383751 + 0.664676i
\(563\) 16.8996 + 29.2709i 0.712233 + 1.23362i 0.964017 + 0.265840i \(0.0856493\pi\)
−0.251784 + 0.967783i \(0.581017\pi\)
\(564\) −2.08492 + 1.74946i −0.0877910 + 0.0736654i
\(565\) −16.0015 + 5.82408i −0.673189 + 0.245021i
\(566\) −9.01987 3.28297i −0.379134 0.137993i
\(567\) −0.766044 0.642788i −0.0321708 0.0269945i
\(568\) −5.69302 + 32.2867i −0.238874 + 1.35472i
\(569\) −9.16448 −0.384195 −0.192097 0.981376i \(-0.561529\pi\)
−0.192097 + 0.981376i \(0.561529\pi\)
\(570\) −2.11892 + 1.49380i −0.0887518 + 0.0625684i
\(571\) −7.33201 −0.306835 −0.153418 0.988161i \(-0.549028\pi\)
−0.153418 + 0.988161i \(0.549028\pi\)
\(572\) −0.729961 + 4.13981i −0.0305212 + 0.173094i
\(573\) 4.90039 + 4.11192i 0.204717 + 0.171778i
\(574\) 1.22570 + 0.446117i 0.0511596 + 0.0186206i
\(575\) −14.3739 + 5.23167i −0.599432 + 0.218176i
\(576\) 1.39229 1.16827i 0.0580120 0.0486778i
\(577\) −8.78407 15.2145i −0.365685 0.633386i 0.623200 0.782062i \(-0.285832\pi\)
−0.988886 + 0.148676i \(0.952499\pi\)
\(578\) −6.05004 + 10.4790i −0.251648 + 0.435868i
\(579\) 3.15784 + 17.9090i 0.131235 + 0.744272i
\(580\) −0.921633 5.22684i −0.0382687 0.217033i
\(581\) 4.77855 8.27669i 0.198248 0.343375i
\(582\) −2.94461 5.10022i −0.122058 0.211411i
\(583\) 15.5636 13.0594i 0.644577 0.540864i
\(584\) 9.04845 3.29337i 0.374428 0.136281i
\(585\) −0.619276 0.225398i −0.0256039 0.00931907i
\(586\) −5.22570 4.38488i −0.215872 0.181138i
\(587\) 2.30686 13.0829i 0.0952144 0.539987i −0.899467 0.436988i \(-0.856045\pi\)
0.994681 0.102999i \(-0.0328438\pi\)
\(588\) 1.48685 0.0613166
\(589\) −0.403738 4.45086i −0.0166357 0.183395i
\(590\) −4.00625 −0.164935
\(591\) 0.310938 1.76342i 0.0127903 0.0725373i
\(592\) 0.163992 + 0.137605i 0.00674002 + 0.00565555i
\(593\) −13.6023 4.95084i −0.558580 0.203307i 0.0472744 0.998882i \(-0.484946\pi\)
−0.605855 + 0.795575i \(0.707169\pi\)
\(594\) −2.39772 + 0.872698i −0.0983795 + 0.0358072i
\(595\) 0.209606 0.175880i 0.00859301 0.00721039i
\(596\) 4.97545 + 8.61774i 0.203803 + 0.352996i
\(597\) 5.83745 10.1108i 0.238911 0.413806i
\(598\) 0.350358 + 1.98698i 0.0143272 + 0.0812537i
\(599\) −5.93021 33.6319i −0.242302 1.37416i −0.826676 0.562678i \(-0.809771\pi\)
0.584374 0.811484i \(-0.301340\pi\)
\(600\) −5.38352 + 9.32453i −0.219781 + 0.380672i
\(601\) 5.68031 + 9.83859i 0.231705 + 0.401324i 0.958310 0.285731i \(-0.0922364\pi\)
−0.726605 + 0.687055i \(0.758903\pi\)
\(602\) −1.68866 + 1.41695i −0.0688245 + 0.0577506i
\(603\) 6.85418 2.49472i 0.279124 0.101593i
\(604\) 17.6400 + 6.42044i 0.717762 + 0.261244i
\(605\) 1.07337 + 0.900665i 0.0436387 + 0.0366172i
\(606\) −1.10559 + 6.27009i −0.0449114 + 0.254705i
\(607\) −15.6709 −0.636062 −0.318031 0.948080i \(-0.603022\pi\)
−0.318031 + 0.948080i \(0.603022\pi\)
\(608\) −24.5843 + 6.67164i −0.997027 + 0.270571i
\(609\) 4.29927 0.174215
\(610\) 1.30592 7.40622i 0.0528750 0.299869i
\(611\) −1.11300 0.933918i −0.0450272 0.0377823i
\(612\) −0.460444 0.167588i −0.0186123 0.00677434i
\(613\) 31.2612 11.3782i 1.26263 0.459559i 0.377978 0.925814i \(-0.376619\pi\)
0.884650 + 0.466255i \(0.154397\pi\)
\(614\) −12.9194 + 10.8407i −0.521386 + 0.437495i
\(615\) −0.755912 1.30928i −0.0304813 0.0527952i
\(616\) 4.44852 7.70506i 0.179236 0.310446i
\(617\) 7.41133 + 42.0317i 0.298369 + 1.69213i 0.653186 + 0.757198i \(0.273432\pi\)
−0.354817 + 0.934936i \(0.615457\pi\)
\(618\) −2.34107 13.2768i −0.0941715 0.534073i
\(619\) 6.38904 11.0661i 0.256797 0.444786i −0.708585 0.705626i \(-0.750666\pi\)
0.965382 + 0.260840i \(0.0839994\pi\)
\(620\) 0.632863 + 1.09615i 0.0254164 + 0.0440225i
\(621\) 2.71833 2.28095i 0.109083 0.0915312i
\(622\) 6.83881 2.48912i 0.274211 0.0998047i
\(623\) 1.20707 + 0.439338i 0.0483602 + 0.0176017i
\(624\) −0.720166 0.604291i −0.0288297 0.0241910i
\(625\) 2.62811 14.9048i 0.105124 0.596190i
\(626\) 0.311926 0.0124671
\(627\) 15.4714 + 1.30376i 0.617869 + 0.0520672i
\(628\) −33.8754 −1.35177
\(629\) −0.0103432 + 0.0586594i −0.000412412 + 0.00233890i
\(630\) 0.455620 + 0.382310i 0.0181523 + 0.0152316i
\(631\) −4.09896 1.49190i −0.163177 0.0593916i 0.259140 0.965840i \(-0.416561\pi\)
−0.422317 + 0.906448i \(0.638783\pi\)
\(632\) 13.6134 4.95486i 0.541510 0.197094i
\(633\) 4.54514 3.81383i 0.180653 0.151586i
\(634\) −5.08656 8.81018i −0.202013 0.349897i
\(635\) −0.994103 + 1.72184i −0.0394498 + 0.0683290i
\(636\) 1.47266 + 8.35187i 0.0583948 + 0.331173i
\(637\) 0.137830 + 0.781671i 0.00546101 + 0.0309709i
\(638\) 5.48500 9.50030i 0.217153 0.376120i
\(639\) 6.56276 + 11.3670i 0.259619 + 0.449673i
\(640\) 6.60591 5.54302i 0.261122 0.219107i
\(641\) 12.5572 4.57044i 0.495979 0.180521i −0.0819057 0.996640i \(-0.526101\pi\)
0.577884 + 0.816119i \(0.303878\pi\)
\(642\) −4.00391 1.45731i −0.158022 0.0575152i
\(643\) −22.9644 19.2694i −0.905628 0.759912i 0.0656542 0.997842i \(-0.479087\pi\)
−0.971282 + 0.237930i \(0.923531\pi\)
\(644\) −0.916188 + 5.19596i −0.0361029 + 0.204750i
\(645\) 2.55500 0.100603
\(646\) −0.729947 0.725296i −0.0287194 0.0285364i
\(647\) 5.32431 0.209320 0.104660 0.994508i \(-0.466625\pi\)
0.104660 + 0.994508i \(0.466625\pi\)
\(648\) 0.433736 2.45984i 0.0170388 0.0966317i
\(649\) 18.3795 + 15.4222i 0.721457 + 0.605374i
\(650\) −2.30315 0.838276i −0.0903368 0.0328799i
\(651\) −0.963457 + 0.350670i −0.0377609 + 0.0137438i
\(652\) 2.93825 2.46548i 0.115071 0.0965557i
\(653\) 6.83802 + 11.8438i 0.267592 + 0.463483i 0.968240 0.250024i \(-0.0804387\pi\)
−0.700647 + 0.713508i \(0.747105\pi\)
\(654\) −1.91505 + 3.31697i −0.0748845 + 0.129704i
\(655\) 1.01348 + 5.74774i 0.0396000 + 0.224583i
\(656\) −0.374499 2.12389i −0.0146217 0.0829241i
\(657\) 1.92754 3.33859i 0.0752004 0.130251i
\(658\) 0.655633 + 1.13559i 0.0255593 + 0.0442699i
\(659\) 3.71484 3.11712i 0.144710 0.121426i −0.567559 0.823333i \(-0.692112\pi\)
0.712269 + 0.701907i \(0.247668\pi\)
\(660\) −4.13208 + 1.50395i −0.160841 + 0.0585413i
\(661\) −44.7501 16.2877i −1.74058 0.633518i −0.741285 0.671190i \(-0.765783\pi\)
−0.999290 + 0.0376723i \(0.988006\pi\)
\(662\) 11.7280 + 9.84099i 0.455823 + 0.382481i
\(663\) 0.0454220 0.257601i 0.00176405 0.0100044i
\(664\) 23.8716 0.926398
\(665\) −1.53998 3.27513i −0.0597179 0.127004i
\(666\) −0.129475 −0.00501704
\(667\) −2.64918 + 15.0243i −0.102577 + 0.581742i
\(668\) −3.19350 2.67967i −0.123560 0.103679i
\(669\) 7.90600 + 2.87755i 0.305663 + 0.111252i
\(670\) −4.07666 + 1.48378i −0.157495 + 0.0573235i
\(671\) −34.5017 + 28.9504i −1.33192 + 1.11762i
\(672\) 2.92201 + 5.06108i 0.112719 + 0.195235i
\(673\) 14.7209 25.4973i 0.567449 0.982851i −0.429368 0.903130i \(-0.641264\pi\)
0.996817 0.0797211i \(-0.0254030\pi\)
\(674\) −1.48744 8.43572i −0.0572942 0.324932i
\(675\) 0.748533 + 4.24514i 0.0288111 + 0.163396i
\(676\) −9.19616 + 15.9282i −0.353698 + 0.612624i
\(677\) 9.46249 + 16.3895i 0.363673 + 0.629900i 0.988562 0.150813i \(-0.0481892\pi\)
−0.624889 + 0.780713i \(0.714856\pi\)
\(678\) 11.2545 9.44364i 0.432226 0.362681i
\(679\) 7.72541 2.81182i 0.296474 0.107908i
\(680\) 0.642231 + 0.233753i 0.0246284 + 0.00896402i
\(681\) −17.7390 14.8848i −0.679759 0.570385i
\(682\) −0.454286 + 2.57638i −0.0173955 + 0.0986548i
\(683\) −41.7889 −1.59901 −0.799504 0.600661i \(-0.794904\pi\)
−0.799504 + 0.600661i \(0.794904\pi\)
\(684\) −3.70038 + 5.32080i −0.141487 + 0.203446i
\(685\) −7.81533 −0.298608
\(686\) 0.124392 0.705462i 0.00474931 0.0269347i
\(687\) 10.4157 + 8.73983i 0.397385 + 0.333445i
\(688\) 3.42497 + 1.24659i 0.130576 + 0.0475257i
\(689\) −4.25426 + 1.54842i −0.162074 + 0.0589902i
\(690\) −1.61678 + 1.35664i −0.0615496 + 0.0516463i
\(691\) 9.02531 + 15.6323i 0.343339 + 0.594680i 0.985051 0.172266i \(-0.0551087\pi\)
−0.641712 + 0.766946i \(0.721775\pi\)
\(692\) 5.50431 9.53375i 0.209243 0.362419i
\(693\) −0.618529 3.50785i −0.0234960 0.133252i
\(694\) 3.85828 + 21.8814i 0.146458 + 0.830607i
\(695\) 5.20438 9.01425i 0.197413 0.341930i
\(696\) 5.36933 + 9.29995i 0.203524 + 0.352514i
\(697\) 0.459677 0.385715i 0.0174115 0.0146100i
\(698\) 12.6211 4.59369i 0.477714 0.173874i
\(699\) −11.3144 4.11810i −0.427949 0.155761i
\(700\) −4.90978 4.11979i −0.185572 0.155713i
\(701\) 1.05086 5.95971i 0.0396903 0.225095i −0.958510 0.285058i \(-0.907987\pi\)
0.998201 + 0.0599629i \(0.0190982\pi\)
\(702\) 0.568584 0.0214598
\(703\) 0.715088 + 0.330673i 0.0269700 + 0.0124716i
\(704\) 6.47388 0.243993
\(705\) 0.263916 1.49674i 0.00993964 0.0563705i
\(706\) 17.4077 + 14.6068i 0.655149 + 0.549735i
\(707\) −8.35191 3.03985i −0.314106 0.114325i
\(708\) −9.41113 + 3.42537i −0.353692 + 0.128733i
\(709\) −5.16727 + 4.33586i −0.194061 + 0.162837i −0.734641 0.678456i \(-0.762649\pi\)
0.540580 + 0.841293i \(0.318205\pi\)
\(710\) −3.90333 6.76077i −0.146489 0.253727i
\(711\) 2.89997 5.02290i 0.108757 0.188373i
\(712\) 0.557150 + 3.15976i 0.0208801 + 0.118417i
\(713\) −0.631778 3.58299i −0.0236603 0.134184i
\(714\) −0.118036 + 0.204445i −0.00441740 + 0.00765117i
\(715\) −1.17370 2.03291i −0.0438940 0.0760267i
\(716\) −14.4725 + 12.1439i −0.540862 + 0.453838i
\(717\) −28.3508 + 10.3189i −1.05878 + 0.385365i
\(718\) 6.40788 + 2.33228i 0.239140 + 0.0870399i
\(719\) −24.8355 20.8394i −0.926206 0.777179i 0.0489262 0.998802i \(-0.484420\pi\)
−0.975132 + 0.221623i \(0.928865\pi\)
\(720\) 0.170766 0.968464i 0.00636409 0.0360925i
\(721\) 18.8201 0.700896
\(722\) −11.7433 + 6.88048i −0.437042 + 0.256065i
\(723\) 12.0565 0.448387
\(724\) −4.23715 + 24.0301i −0.157473 + 0.893071i
\(725\) −14.1968 11.9125i −0.527254 0.442419i
\(726\) −1.13600 0.413470i −0.0421609 0.0153453i
\(727\) −13.7636 + 5.00956i −0.510465 + 0.185794i −0.584395 0.811469i \(-0.698668\pi\)
0.0739298 + 0.997263i \(0.476446\pi\)
\(728\) −1.51873 + 1.27437i −0.0562881 + 0.0472313i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) −1.14644 + 1.98569i −0.0424317 + 0.0734938i
\(731\) 0.176100 + 0.998711i 0.00651329 + 0.0369387i
\(732\) −3.26463 18.5146i −0.120664 0.684321i
\(733\) 4.75964 8.24393i 0.175801 0.304497i −0.764637 0.644461i \(-0.777082\pi\)
0.940438 + 0.339965i \(0.110415\pi\)
\(734\) 4.48747 + 7.77252i 0.165635 + 0.286889i
\(735\) −0.636034 + 0.533696i −0.0234605 + 0.0196857i
\(736\) −19.4870 + 7.09270i −0.718302 + 0.261440i
\(737\) 24.4144 + 8.88610i 0.899314 + 0.327324i
\(738\) 0.999198 + 0.838426i 0.0367810 + 0.0308629i
\(739\) 7.04937 39.9789i 0.259315 1.47065i −0.525433 0.850835i \(-0.676097\pi\)
0.784748 0.619814i \(-0.212792\pi\)
\(740\) −0.223129 −0.00820237
\(741\) −3.14029 1.45214i −0.115361 0.0533457i
\(742\) 4.08590 0.149998
\(743\) −2.32379 + 13.1789i −0.0852517 + 0.483486i 0.912050 + 0.410078i \(0.134499\pi\)
−0.997302 + 0.0734079i \(0.976612\pi\)
\(744\) −1.96181 1.64615i −0.0719233 0.0603508i
\(745\) −5.22165 1.90053i −0.191306 0.0696299i
\(746\) 15.0682 5.48437i 0.551685 0.200797i
\(747\) 7.32116 6.14318i 0.267867 0.224767i
\(748\) −0.872671 1.51151i −0.0319080 0.0552663i
\(749\) 2.97404 5.15118i 0.108669 0.188220i
\(750\) −0.961608 5.45355i −0.0351129 0.199135i
\(751\) 1.97270 + 11.1878i 0.0719850 + 0.408247i 0.999413 + 0.0342465i \(0.0109031\pi\)
−0.927428 + 0.374001i \(0.877986\pi\)
\(752\) 1.08404 1.87761i 0.0395308 0.0684694i
\(753\) −5.39568 9.34560i −0.196630 0.340573i
\(754\) −1.87259 + 1.57129i −0.0681958 + 0.0572231i
\(755\) −9.85050 + 3.58529i −0.358496 + 0.130482i
\(756\) 1.39718 + 0.508532i 0.0508150 + 0.0184951i
\(757\) 15.6270 + 13.1126i 0.567971 + 0.476585i 0.880972 0.473168i \(-0.156890\pi\)
−0.313001 + 0.949753i \(0.601334\pi\)
\(758\) −1.86421 + 10.5724i −0.0677110 + 0.384008i
\(759\) 12.6397 0.458793
\(760\) 5.16132 7.42150i 0.187221 0.269206i
\(761\) −44.7223 −1.62118 −0.810591 0.585612i \(-0.800854\pi\)
−0.810591 + 0.585612i \(0.800854\pi\)
\(762\) 0.297871 1.68931i 0.0107907 0.0611972i
\(763\) −4.09583 3.43681i −0.148279 0.124421i
\(764\) −8.93779 3.25309i −0.323358 0.117693i
\(765\) 0.257120 0.0935840i 0.00929619 0.00338354i
\(766\) 14.1425 11.8670i 0.510990 0.428771i
\(767\) −2.67320 4.63012i −0.0965237 0.167184i
\(768\) −5.53752 + 9.59126i −0.199818 + 0.346095i
\(769\) −0.0947392 0.537293i −0.00341638 0.0193753i 0.983052 0.183327i \(-0.0586868\pi\)
−0.986468 + 0.163952i \(0.947576\pi\)
\(770\) 0.367882 + 2.08636i 0.0132575 + 0.0751873i
\(771\) −1.78544 + 3.09248i −0.0643011 + 0.111373i
\(772\) −13.5194 23.4162i −0.486573 0.842769i
\(773\) −19.5167 + 16.3764i −0.701966 + 0.589019i −0.922332 0.386398i \(-0.873719\pi\)
0.220366 + 0.975417i \(0.429275\pi\)
\(774\) −2.07144 + 0.753944i −0.0744565 + 0.0270999i
\(775\) 4.15311 + 1.51161i 0.149184 + 0.0542986i
\(776\) 15.7306 + 13.1995i 0.564696 + 0.473836i
\(777\) 0.0313857 0.177997i 0.00112596 0.00638562i
\(778\) 14.6594 0.525565
\(779\) −3.37726 7.18253i −0.121003 0.257341i
\(780\) 0.979864 0.0350847
\(781\) −8.11852 + 46.0424i −0.290503 + 1.64753i
\(782\) −0.641723 0.538470i −0.0229480 0.0192556i
\(783\) 4.03999 + 1.47044i 0.144377 + 0.0525491i
\(784\) −1.11299 + 0.405096i −0.0397497 + 0.0144677i
\(785\) 14.4910 12.1594i 0.517204 0.433986i
\(786\) −2.51775 4.36086i −0.0898050 0.155547i
\(787\) 13.2356 22.9247i 0.471798 0.817178i −0.527682 0.849442i \(-0.676939\pi\)
0.999479 + 0.0322646i \(0.0102719\pi\)
\(788\) 0.462318 + 2.62194i 0.0164694 + 0.0934026i
\(789\) −0.775231 4.39655i −0.0275989 0.156521i
\(790\) −1.72481 + 2.98747i −0.0613662 + 0.106289i
\(791\) 10.2546 + 17.7615i 0.364612 + 0.631527i
\(792\) 6.81552 5.71890i 0.242179 0.203212i
\(793\) 9.43094 3.43258i 0.334903 0.121895i
\(794\) −18.2755 6.65173i −0.648573 0.236061i
\(795\) −3.62782 3.04410i −0.128665 0.107963i
\(796\) −3.01433 + 17.0951i −0.106840 + 0.605920i
\(797\) 4.77103 0.168999 0.0844994 0.996424i \(-0.473071\pi\)
0.0844994 + 0.996424i \(0.473071\pi\)
\(798\) 2.21497 + 2.20086i 0.0784091 + 0.0779095i
\(799\) 0.603243 0.0213412
\(800\) 4.37445 24.8087i 0.154660 0.877121i
\(801\) 0.984013 + 0.825685i 0.0347684 + 0.0291741i
\(802\) 13.3119 + 4.84513i 0.470059 + 0.171087i
\(803\) 12.9035 4.69650i 0.455356 0.165736i
\(804\) −8.30789 + 6.97115i −0.292997 + 0.245853i
\(805\) −1.47314 2.55155i −0.0519213 0.0899304i
\(806\) 0.291482 0.504861i 0.0102670 0.0177830i
\(807\) 0.267668 + 1.51802i 0.00942237 + 0.0534369i
\(808\) −3.85501 21.8629i −0.135619 0.769133i
\(809\) 23.2647 40.2957i 0.817944 1.41672i −0.0892506 0.996009i \(-0.528447\pi\)
0.907195 0.420711i \(-0.138219\pi\)
\(810\) 0.297385 + 0.515085i 0.0104490 + 0.0180983i
\(811\) 16.0493 13.4670i 0.563569 0.472890i −0.315936 0.948781i \(-0.602318\pi\)
0.879505 + 0.475890i \(0.157874\pi\)
\(812\) −6.00686 + 2.18632i −0.210799 + 0.0767247i
\(813\) −27.7161 10.0878i −0.972045 0.353795i
\(814\) −0.353287 0.296443i −0.0123827 0.0103903i
\(815\) −0.371932 + 2.10933i −0.0130282 + 0.0738867i
\(816\) 0.390328 0.0136642
\(817\) 13.3661 + 1.12635i 0.467621 + 0.0394060i
\(818\) 21.4808 0.751058
\(819\) −0.137830 + 0.781671i −0.00481616 + 0.0273138i
\(820\) 1.72196 + 1.44489i 0.0601333 + 0.0504579i
\(821\) 1.65273 + 0.601544i 0.0576806 + 0.0209940i 0.370699 0.928753i \(-0.379118\pi\)
−0.313019 + 0.949747i \(0.601340\pi\)
\(822\) 6.33620 2.30619i 0.221000 0.0804376i
\(823\) 17.8512 14.9790i 0.622255 0.522134i −0.276256 0.961084i \(-0.589094\pi\)
0.898512 + 0.438950i \(0.144649\pi\)
\(824\) 23.5043 + 40.7106i 0.818810 + 1.41822i
\(825\) −7.67716 + 13.2972i −0.267284 + 0.462950i
\(826\) 0.837880 + 4.75185i 0.0291536 + 0.165338i
\(827\) 3.19686 + 18.1303i 0.111166 + 0.630453i 0.988577 + 0.150714i \(0.0481573\pi\)
−0.877412 + 0.479738i \(0.840732\pi\)
\(828\) −2.63806 + 4.56925i −0.0916789 + 0.158793i
\(829\) 2.24913 + 3.89560i 0.0781154 + 0.135300i 0.902437 0.430822i \(-0.141776\pi\)
−0.824321 + 0.566122i \(0.808443\pi\)
\(830\) −4.35440 + 3.65378i −0.151143 + 0.126824i
\(831\) 20.1753 7.34320i 0.699872 0.254733i
\(832\) −1.35560 0.493400i −0.0469971 0.0171056i
\(833\) −0.252451 0.211832i −0.00874692 0.00733954i
\(834\) −1.55943 + 8.84395i −0.0539986 + 0.306241i
\(835\) 2.32794 0.0805618
\(836\) −22.2794 + 6.04613i −0.770548 + 0.209110i
\(837\) −1.02529 −0.0354392
\(838\) 4.21473 23.9029i 0.145595 0.825713i
\(839\) −34.0489 28.5705i −1.17550 0.986362i −0.999998 0.00188261i \(-0.999401\pi\)
−0.175502 0.984479i \(-0.556155\pi\)
\(840\) −1.94880 0.709306i −0.0672400 0.0244734i
\(841\) 9.88208 3.59678i 0.340762 0.124027i
\(842\) 17.5153 14.6971i 0.603618 0.506495i
\(843\) −12.6998 21.9966i −0.437403 0.757604i
\(844\) −4.41094 + 7.63997i −0.151831 + 0.262978i
\(845\) −1.78347 10.1146i −0.0613532 0.347952i
\(846\) 0.227699 + 1.29135i 0.00782846 + 0.0443974i
\(847\) 0.843800 1.46150i 0.0289933 0.0502179i
\(848\) −3.37786 5.85062i −0.115996 0.200911i
\(849\) 10.2647 8.61311i 0.352284 0.295601i
\(850\) 0.956253 0.348048i 0.0327992 0.0119379i
\(851\) 0.602692 + 0.219362i 0.0206600 + 0.00751963i
\(852\) −14.9499 12.5444i −0.512174 0.429765i
\(853\) 7.73416 43.8626i 0.264813 1.50183i −0.504756 0.863262i \(-0.668417\pi\)
0.769568 0.638564i \(-0.220471\pi\)
\(854\) −9.05773 −0.309949
\(855\) −0.326948 3.60432i −0.0111814 0.123265i
\(856\) 14.8570 0.507803
\(857\) 2.12811 12.0691i 0.0726948 0.412273i −0.926645 0.375938i \(-0.877321\pi\)
0.999340 0.0363350i \(-0.0115683\pi\)
\(858\) 1.55145 + 1.30182i 0.0529657 + 0.0444435i
\(859\) −4.49970 1.63776i −0.153528 0.0558796i 0.264113 0.964492i \(-0.414921\pi\)
−0.417641 + 0.908612i \(0.637143\pi\)
\(860\) −3.56980 + 1.29930i −0.121729 + 0.0443058i
\(861\) −1.39485 + 1.17042i −0.0475365 + 0.0398879i
\(862\) −9.85672 17.0723i −0.335721 0.581486i
\(863\) −7.89493 + 13.6744i −0.268746 + 0.465483i −0.968538 0.248864i \(-0.919943\pi\)
0.699792 + 0.714347i \(0.253276\pi\)
\(864\) 1.01481 + 5.75525i 0.0345244 + 0.195797i
\(865\) 1.06749 + 6.05402i 0.0362956 + 0.205843i
\(866\) 4.73608 8.20313i 0.160938 0.278754i
\(867\) −8.44570 14.6284i −0.286831 0.496806i
\(868\) 1.16780 0.979899i 0.0396376 0.0332599i
\(869\) 19.4133 7.06587i 0.658551 0.239693i
\(870\) −2.40286 0.874570i −0.0814647 0.0296507i
\(871\) −4.43502 3.72143i −0.150275 0.126096i
\(872\) 2.31907 13.1521i 0.0785337 0.445387i
\(873\) 8.22121 0.278246
\(874\) −9.05599 + 6.38430i −0.306323 + 0.215952i
\(875\) 7.73046 0.261337
\(876\) −0.995337 + 5.64484i −0.0336293 + 0.190721i
\(877\) −33.9499 28.4873i −1.14641 0.961949i −0.146777 0.989170i \(-0.546890\pi\)
−0.999629 + 0.0272203i \(0.991334\pi\)
\(878\) −18.3032 6.66182i −0.617703 0.224825i
\(879\) 8.94858 3.25702i 0.301828 0.109856i
\(880\) 2.68334 2.25159i 0.0904554 0.0759011i
\(881\) 4.61067 + 7.98591i 0.155337 + 0.269052i 0.933182 0.359405i \(-0.117020\pi\)
−0.777844 + 0.628457i \(0.783687\pi\)
\(882\) 0.358173 0.620373i 0.0120603 0.0208891i
\(883\) 1.97595 + 11.2062i 0.0664962 + 0.377119i 0.999836 + 0.0181238i \(0.00576929\pi\)
−0.933340 + 0.358995i \(0.883120\pi\)
\(884\) 0.0675357 + 0.383014i 0.00227147 + 0.0128822i
\(885\) 2.79631 4.84335i 0.0939969 0.162807i
\(886\) −13.3200 23.0709i −0.447494 0.775082i
\(887\) −25.4743 + 21.3755i −0.855344 + 0.717719i −0.960960 0.276688i \(-0.910763\pi\)
0.105615 + 0.994407i \(0.466319\pi\)
\(888\) 0.424232 0.154408i 0.0142363 0.00518159i
\(889\) 2.25020 + 0.819006i 0.0754693 + 0.0274686i
\(890\) −0.585260 0.491092i −0.0196180 0.0164614i
\(891\) 0.618529 3.50785i 0.0207215 0.117517i
\(892\) −12.5094 −0.418847
\(893\) 2.04046 7.71363i 0.0682814 0.258127i
\(894\) 4.79422 0.160343
\(895\) 1.83197 10.3896i 0.0612361 0.347287i
\(896\) −7.95622 6.67606i −0.265798 0.223031i
\(897\) −2.64671 0.963322i −0.0883710 0.0321644i
\(898\) −20.7610 + 7.55637i −0.692802 + 0.252159i
\(899\) 3.37672 2.83341i 0.112620 0.0944994i
\(900\) −3.20463 5.55058i −0.106821 0.185019i
\(901\) 0.939851 1.62787i 0.0313110 0.0542322i
\(902\) 0.806784 + 4.57550i 0.0268630 + 0.152348i
\(903\) −0.534361 3.03051i −0.0177824 0.100849i
\(904\) −25.6139 + 44.3645i −0.851904 + 1.47554i
\(905\) −6.81292 11.8003i −0.226469 0.392256i
\(906\) 6.92824 5.81348i 0.230175 0.193140i
\(907\) 1.04303 0.379633i 0.0346334 0.0126055i −0.324645 0.945836i \(-0.605245\pi\)
0.359279 + 0.933230i \(0.383023\pi\)
\(908\) 32.3539 + 11.7759i 1.07370 + 0.390796i
\(909\) −6.80854 5.71304i −0.225825 0.189490i
\(910\) 0.0819769 0.464914i 0.00271751 0.0154117i
\(911\) −36.2811 −1.20205 −0.601024 0.799231i \(-0.705240\pi\)
−0.601024 + 0.799231i \(0.705240\pi\)
\(912\) 1.32028 4.99110i 0.0437188 0.165272i
\(913\) 34.0420 1.12663
\(914\) −0.424739 + 2.40882i −0.0140491 + 0.0796766i
\(915\) 8.04224 + 6.74824i 0.265868 + 0.223090i
\(916\) −18.9971 6.91440i −0.627683 0.228458i
\(917\) 6.60550 2.40420i 0.218133 0.0793938i
\(918\) −0.180842 + 0.151745i −0.00596869 + 0.00500832i
\(919\) 21.5751 + 37.3691i 0.711696 + 1.23269i 0.964220 + 0.265102i \(0.0854058\pi\)
−0.252525 + 0.967590i \(0.581261\pi\)
\(920\) 3.67959 6.37323i 0.121312 0.210119i
\(921\) −4.08825 23.1856i −0.134712 0.763992i
\(922\) −2.61588 14.8354i −0.0861495 0.488578i
\(923\) 5.20906 9.02235i 0.171458 0.296974i
\(924\) 2.64805 + 4.58656i 0.0871146 + 0.150887i
\(925\) −0.596839 + 0.500807i −0.0196239 + 0.0164664i
\(926\) 22.0688 8.03240i 0.725227 0.263961i
\(927\) 17.6851 + 6.43684i 0.580854 + 0.211414i
\(928\) −19.2469 16.1501i −0.631811 0.530152i
\(929\) 9.90248 56.1598i 0.324890 1.84254i −0.185558 0.982633i \(-0.559409\pi\)
0.510448 0.859909i \(-0.329480\pi\)
\(930\) 0.609811 0.0199965
\(931\) −3.56259 + 2.51156i −0.116759 + 0.0823131i
\(932\) 17.9024 0.586413
\(933\) −1.76418 + 10.0052i −0.0577566 + 0.327554i
\(934\) −11.4639 9.61936i −0.375111 0.314755i
\(935\) 0.915853 + 0.333343i 0.0299516 + 0.0109015i
\(936\) −1.86300 + 0.678078i −0.0608942 + 0.0221637i
\(937\) 5.58903 4.68975i 0.182586 0.153208i −0.546914 0.837189i \(-0.684197\pi\)
0.729500 + 0.683981i \(0.239753\pi\)
\(938\) 2.61253 + 4.52504i 0.0853023 + 0.147748i
\(939\) −0.217721 + 0.377103i −0.00710505 + 0.0123063i
\(940\) 0.392403 + 2.22543i 0.0127988 + 0.0725854i
\(941\) 2.69317 + 15.2737i 0.0877947 + 0.497909i 0.996718 + 0.0809463i \(0.0257942\pi\)
−0.908924 + 0.416962i \(0.863095\pi\)
\(942\) −8.16036 + 14.1342i −0.265879 + 0.460516i
\(943\) −3.23067 5.59568i −0.105205 0.182221i
\(944\) 6.11152 5.12817i 0.198913 0.166908i
\(945\) −0.780211 + 0.283974i −0.0253803 + 0.00923766i
\(946\) −7.37841 2.68552i −0.239893 0.0873138i
\(947\) 2.14161 + 1.79703i 0.0695930 + 0.0583955i 0.676921 0.736056i \(-0.263314\pi\)
−0.607328 + 0.794451i \(0.707758\pi\)
\(948\) −1.49748 + 8.49263i −0.0486359 + 0.275828i
\(949\) −3.05989 −0.0993281
\(950\) −1.21595 13.4048i −0.0394507 0.434909i
\(951\) 14.2014 0.460513
\(952\) 0.142939 0.810645i 0.00463267 0.0262732i
\(953\) −36.6100 30.7194i −1.18591 0.995099i −0.999921 0.0125482i \(-0.996006\pi\)
−0.185992 0.982551i \(-0.559550\pi\)
\(954\) 3.83949 + 1.39746i 0.124308 + 0.0452444i
\(955\) 4.99102 1.81658i 0.161506 0.0587832i
\(956\) 34.3638 28.8346i 1.11140 0.932578i
\(957\) 7.65692 + 13.2622i 0.247513 + 0.428705i
\(958\) −5.90180 + 10.2222i −0.190678 + 0.330265i
\(959\) 1.63452 + 9.26984i 0.0527815 + 0.299339i
\(960\) −0.262042 1.48612i −0.00845738 0.0479642i
\(961\) 14.9744 25.9364i 0.483045 0.836658i
\(962\) 0.0513839 + 0.0889995i 0.00165668 + 0.00286946i
\(963\) 4.55649 3.82335i 0.146831 0.123206i
\(964\) −16.8451 + 6.13113i −0.542545 + 0.197470i
\(965\) 14.1883 + 5.16413i 0.456739 + 0.166239i
\(966\) 1.94726 + 1.63394i 0.0626521 + 0.0525713i
\(967\) 0.474390 2.69040i 0.0152554 0.0865175i −0.976230 0.216739i \(-0.930458\pi\)
0.991485 + 0.130222i \(0.0415690\pi\)
\(968\) 4.21527 0.135484
\(969\) 1.38634 0.376222i 0.0445357 0.0120860i
\(970\) −4.88973 −0.157000
\(971\) 0.601985 3.41402i 0.0193186 0.109561i −0.973624 0.228160i \(-0.926729\pi\)
0.992942 + 0.118599i \(0.0378402\pi\)
\(972\) 1.13899 + 0.955728i 0.0365332 + 0.0306550i
\(973\) −11.7804 4.28770i −0.377661 0.137457i
\(974\) 3.31753 1.20748i 0.106301 0.0386903i
\(975\) 2.62100 2.19928i 0.0839392 0.0704334i
\(976\) 7.48812 + 12.9698i 0.239689 + 0.415153i
\(977\) −21.8537 + 37.8517i −0.699161 + 1.21098i 0.269596 + 0.962973i \(0.413110\pi\)
−0.968758 + 0.248009i \(0.920224\pi\)
\(978\) −0.320893 1.81987i −0.0102610 0.0581931i
\(979\) 0.794523 + 4.50597i 0.0253931 + 0.144011i
\(980\) 0.617253 1.06911i 0.0197174 0.0341516i
\(981\) −2.67337 4.63040i −0.0853540 0.147837i
\(982\) −16.7924 + 14.0905i −0.535868 + 0.449647i
\(983\) 38.4836 14.0069i 1.22744 0.446750i 0.354718 0.934973i \(-0.384577\pi\)
0.872719 + 0.488223i \(0.162355\pi\)
\(984\) −4.27382 1.55554i −0.136244 0.0495889i
\(985\) −1.13890 0.955647i −0.0362882 0.0304494i
\(986\) 0.176243 0.999522i 0.00561271 0.0318312i
\(987\) −1.83050 −0.0582653
\(988\) 5.12601 + 0.431964i 0.163080 + 0.0137426i
\(989\) 10.9197 0.347228
\(990\) −0.367882 + 2.08636i −0.0116921 + 0.0663090i
\(991\) 17.3138 + 14.5280i 0.549990 + 0.461496i 0.874937 0.484236i \(-0.160902\pi\)
−0.324948 + 0.945732i \(0.605347\pi\)
\(992\) 5.63047 + 2.04933i 0.178768 + 0.0650661i
\(993\) −20.0833 + 7.30972i −0.637324 + 0.231967i
\(994\) −7.20266 + 6.04375i −0.228455 + 0.191696i
\(995\) −4.84674 8.39479i −0.153652 0.266133i
\(996\) −7.10498 + 12.3062i −0.225130 + 0.389936i
\(997\) 7.77462 + 44.0920i 0.246225 + 1.39641i 0.817631 + 0.575742i \(0.195287\pi\)
−0.571407 + 0.820667i \(0.693602\pi\)
\(998\) 4.00770 + 22.7288i 0.126862 + 0.719468i
\(999\) 0.0903716 0.156528i 0.00285923 0.00495234i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.bo.b.169.2 yes 18
19.3 odd 18 7581.2.a.bh.1.5 9
19.9 even 9 inner 399.2.bo.b.85.2 18
19.16 even 9 7581.2.a.bg.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.bo.b.85.2 18 19.9 even 9 inner
399.2.bo.b.169.2 yes 18 1.1 even 1 trivial
7581.2.a.bg.1.5 9 19.16 even 9
7581.2.a.bh.1.5 9 19.3 odd 18