L(s) = 1 | + (−1.28 − 2.23i)2-s + (−0.5 + 0.866i)3-s + (−2.32 + 4.02i)4-s + (−1.82 − 3.15i)5-s + 2.57·6-s + (0.967 − 2.46i)7-s + 6.80·8-s + (−0.499 − 0.866i)9-s + (−4.69 + 8.12i)10-s + (2.06 − 3.58i)11-s + (−2.32 − 4.02i)12-s − 4.13·13-s + (−6.74 + 1.01i)14-s + 3.64·15-s + (−4.13 − 7.15i)16-s + (−1.5 + 2.59i)17-s + ⋯ |
L(s) = 1 | + (−0.911 − 1.57i)2-s + (−0.288 + 0.499i)3-s + (−1.16 + 2.01i)4-s + (−0.814 − 1.41i)5-s + 1.05·6-s + (0.365 − 0.930i)7-s + 2.40·8-s + (−0.166 − 0.288i)9-s + (−1.48 + 2.57i)10-s + (0.623 − 1.08i)11-s + (−0.670 − 1.16i)12-s − 1.14·13-s + (−1.80 + 0.270i)14-s + 0.940·15-s + (−1.03 − 1.78i)16-s + (−0.363 + 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0857 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0857 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.172963 + 0.188491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.172963 + 0.188491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.967 + 2.46i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (1.28 + 2.23i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.82 + 3.15i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.06 + 3.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4.13T + 13T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.41 - 2.45i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.66T + 29T^{2} \) |
| 31 | \( 1 + (4.14 - 7.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.172 - 0.298i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.31T + 41T^{2} \) |
| 43 | \( 1 - 6.00T + 43T^{2} \) |
| 47 | \( 1 + (4.35 + 7.54i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.50 + 4.34i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.00 - 5.20i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.181 - 0.314i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.24 + 7.35i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.88T + 71T^{2} \) |
| 73 | \( 1 + (-5.50 + 9.53i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.39 - 9.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 17.3T + 83T^{2} \) |
| 89 | \( 1 + (-5.32 - 9.22i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83456397989575727558500373540, −9.712609092269909008395188070745, −9.005030736297470786050633881496, −8.301361180689588999399025096679, −7.38666349674295633350250507246, −5.21730333383282753861490840072, −4.15347758796463648473387294337, −3.55006981708457487248284724051, −1.46495551932363390506282059762, −0.24717407924063765583436559115,
2.34797165912495807673112095096, 4.52037087101876579045664366386, 5.70165795762043367771054835620, 6.68318842251652829665337800431, 7.39039340241357597664387242651, 7.72159554481953050398378171148, 9.095682162857757446499945788915, 9.746792465279353292941149241943, 10.99294561282799894868369121046, 11.70004107320202285065648597597