Properties

Label 399.2.j.e
Level $399$
Weight $2$
Character orbit 399.j
Analytic conductor $3.186$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.542936601.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{6} - 4x^{5} + x^{4} - 8x^{3} + 8x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_{3}) q^{2} - \beta_{4} q^{3} + ( - \beta_{7} - \beta_{5} - 3 \beta_{4} + \cdots + 2) q^{4}+ \cdots + (\beta_{4} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{5} + \beta_{3}) q^{2} - \beta_{4} q^{3} + ( - \beta_{7} - \beta_{5} - 3 \beta_{4} + \cdots + 2) q^{4}+ \cdots + ( - \beta_{6} + \beta_{5} + 3 \beta_{3} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{3} - 8 q^{4} - 4 q^{5} - 4 q^{6} + 6 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 4 q^{3} - 8 q^{4} - 4 q^{5} - 4 q^{6} + 6 q^{7} + 6 q^{8} - 4 q^{9} - q^{10} - 8 q^{12} - 18 q^{14} + 8 q^{15} - 20 q^{16} - 12 q^{17} + 2 q^{18} + 4 q^{19} + 88 q^{20} + 3 q^{21} - 48 q^{22} + 5 q^{23} - 3 q^{24} - 20 q^{25} + 24 q^{26} + 8 q^{27} + 12 q^{28} - 32 q^{29} - q^{30} - 23 q^{31} + 16 q^{32} - 12 q^{34} + 18 q^{35} + 16 q^{36} + q^{37} - 2 q^{38} + 21 q^{40} - 10 q^{41} + 9 q^{42} + 10 q^{43} - 3 q^{44} - 4 q^{45} + 11 q^{46} - 6 q^{47} + 40 q^{48} - 2 q^{49} - 20 q^{50} - 12 q^{51} - 3 q^{52} + 12 q^{53} + 2 q^{54} + 6 q^{55} + 66 q^{56} - 8 q^{57} + q^{58} + 15 q^{59} - 44 q^{60} - 7 q^{61} - 2 q^{62} - 9 q^{63} + 62 q^{64} - 3 q^{65} + 24 q^{66} - 17 q^{67} - 24 q^{68} - 10 q^{69} + 45 q^{70} - 24 q^{71} - 3 q^{72} + 5 q^{73} - 8 q^{74} - 20 q^{75} - 16 q^{76} + 6 q^{77} - 48 q^{78} - 3 q^{79} - 83 q^{80} - 4 q^{81} - 19 q^{82} - 28 q^{83} + 9 q^{84} + 24 q^{85} + q^{86} + 16 q^{87} + 45 q^{88} - 7 q^{89} + 2 q^{90} - 27 q^{91} - 2 q^{92} - 23 q^{93} - 36 q^{94} + 4 q^{95} + 16 q^{96} + 2 q^{97} + 43 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + 2x^{6} - 4x^{5} + x^{4} - 8x^{3} + 8x^{2} - 8x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - \nu^{6} + 7\nu^{3} + 6\nu^{2} + 8\nu - 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + \nu^{6} - 2\nu^{5} + 4\nu^{4} - \nu^{3} + 8\nu^{2} - 8\nu + 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - 3\nu^{5} - \nu^{3} + 7\nu^{2} + 2\nu + 16 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + \nu^{6} + 4\nu^{5} + \nu^{3} - 10\nu^{2} - 8\nu - 16 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} + \nu^{6} + 6\nu^{5} + 3\nu^{3} - 20\nu^{2} - 4\nu - 32 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} + 2\nu^{5} - \nu^{4} + \nu^{3} - 5\nu^{2} + \nu - 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - \beta_{6} + \beta_{3} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{4} + \beta_{2} - \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{7} + \beta_{6} - \beta_{5} - 2\beta_{4} + \beta_{3} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} - 3\beta_{6} + \beta_{5} - 2\beta_{4} + \beta_{3} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{7} + 3\beta_{5} + 6\beta_{4} + 2\beta_{3} + 4\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4\beta_{7} + \beta_{6} - 3\beta_{5} + \beta_{4} + 4\beta_{3} - \beta_{2} - 3\beta _1 - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(-1 + \beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
58.1
−0.139771 1.40729i
−1.06969 + 0.925071i
1.41379 0.0347146i
0.295677 + 1.38296i
−0.139771 + 1.40729i
−1.06969 0.925071i
1.41379 + 0.0347146i
0.295677 1.38296i
−1.28863 + 2.23198i −0.500000 0.866025i −2.32116 4.02036i −1.82116 + 3.15434i 2.57727 0.967478 + 2.46252i 6.80995 −0.500000 + 0.866025i −4.69361 8.12957i
58.2 0.266288 0.461225i −0.500000 0.866025i 0.858181 + 1.48641i 1.35818 2.35244i −0.532576 2.59189 + 0.531122i 1.97925 −0.500000 + 0.866025i −0.723335 1.25285i
58.3 0.676830 1.17230i −0.500000 0.866025i 0.0838024 + 0.145150i 0.583802 1.01118i −1.35366 1.40697 + 2.24063i 2.93420 −0.500000 + 0.866025i −0.790270 1.36879i
58.4 1.34552 2.33050i −0.500000 0.866025i −2.62083 4.53941i −2.12083 + 3.67338i −2.69103 −1.96634 1.77017i −8.72340 −0.500000 + 0.866025i 5.70721 + 9.88518i
172.1 −1.28863 2.23198i −0.500000 + 0.866025i −2.32116 + 4.02036i −1.82116 3.15434i 2.57727 0.967478 2.46252i 6.80995 −0.500000 0.866025i −4.69361 + 8.12957i
172.2 0.266288 + 0.461225i −0.500000 + 0.866025i 0.858181 1.48641i 1.35818 + 2.35244i −0.532576 2.59189 0.531122i 1.97925 −0.500000 0.866025i −0.723335 + 1.25285i
172.3 0.676830 + 1.17230i −0.500000 + 0.866025i 0.0838024 0.145150i 0.583802 + 1.01118i −1.35366 1.40697 2.24063i 2.93420 −0.500000 0.866025i −0.790270 + 1.36879i
172.4 1.34552 + 2.33050i −0.500000 + 0.866025i −2.62083 + 4.53941i −2.12083 3.67338i −2.69103 −1.96634 + 1.77017i −8.72340 −0.500000 0.866025i 5.70721 9.88518i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 58.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.j.e 8
3.b odd 2 1 1197.2.j.i 8
7.c even 3 1 inner 399.2.j.e 8
7.c even 3 1 2793.2.a.bb 4
7.d odd 6 1 2793.2.a.z 4
21.g even 6 1 8379.2.a.ca 4
21.h odd 6 1 1197.2.j.i 8
21.h odd 6 1 8379.2.a.bz 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.e 8 1.a even 1 1 trivial
399.2.j.e 8 7.c even 3 1 inner
1197.2.j.i 8 3.b odd 2 1
1197.2.j.i 8 21.h odd 6 1
2793.2.a.z 4 7.d odd 6 1
2793.2.a.bb 4 7.c even 3 1
8379.2.a.bz 4 21.h odd 6 1
8379.2.a.ca 4 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 2T_{2}^{7} + 10T_{2}^{6} - 14T_{2}^{5} + 67T_{2}^{4} - 98T_{2}^{3} + 139T_{2}^{2} - 65T_{2} + 25 \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 2 T^{7} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$7$ \( T^{8} - 6 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} + 42 T^{6} + \cdots + 114921 \) Copy content Toggle raw display
$13$ \( (T^{4} - 42 T^{2} + \cdots + 339)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 3 T + 9)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} - 5 T^{7} + \cdots + 1225 \) Copy content Toggle raw display
$29$ \( (T^{4} + 16 T^{3} + \cdots - 1379)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 23 T^{7} + \cdots + 648025 \) Copy content Toggle raw display
$37$ \( T^{8} - T^{7} + \cdots + 49 \) Copy content Toggle raw display
$41$ \( (T^{4} + 5 T^{3} + \cdots + 619)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 5 T^{3} + \cdots + 211)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 6 T^{7} + \cdots + 1071225 \) Copy content Toggle raw display
$53$ \( T^{8} - 12 T^{7} + \cdots + 9801 \) Copy content Toggle raw display
$59$ \( T^{8} - 15 T^{7} + \cdots + 690561 \) Copy content Toggle raw display
$61$ \( T^{8} + 7 T^{7} + \cdots + 49 \) Copy content Toggle raw display
$67$ \( T^{8} + 17 T^{7} + \cdots + 67092481 \) Copy content Toggle raw display
$71$ \( (T^{4} + 12 T^{3} + \cdots - 3045)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} - 5 T^{7} + \cdots + 737881 \) Copy content Toggle raw display
$79$ \( T^{8} + 3 T^{7} + \cdots + 50168889 \) Copy content Toggle raw display
$83$ \( (T^{4} + 14 T^{3} + \cdots + 367)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 7 T^{7} + \cdots + 2758921 \) Copy content Toggle raw display
$97$ \( (T^{4} - T^{3} - 36 T^{2} + \cdots + 43)^{2} \) Copy content Toggle raw display
show more
show less