Properties

Label 399.2.j.e
Level 399399
Weight 22
Character orbit 399.j
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.j (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 8.0.542936601.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+2x64x5+x48x3+8x28x+16 x^{8} - x^{7} + 2x^{6} - 4x^{5} + x^{4} - 8x^{3} + 8x^{2} - 8x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5+β3)q2β4q3+(β7β53β4++2)q4+(2β7β6+β5+3)q5+(β6β5β3β1)q6++(β6+β5+3β3+1)q99+O(q100) q + (\beta_{5} + \beta_{3}) q^{2} - \beta_{4} q^{3} + ( - \beta_{7} - \beta_{5} - 3 \beta_{4} + \cdots + 2) q^{4} + (2 \beta_{7} - \beta_{6} + \beta_{5} + \cdots - 3) q^{5} + (\beta_{6} - \beta_{5} - \beta_{3} - \beta_1) q^{6}+ \cdots + ( - \beta_{6} + \beta_{5} + 3 \beta_{3} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q24q38q44q54q6+6q7+6q84q9q108q1218q14+8q1520q1612q17+2q18+4q19+88q20+3q2148q22++43q98+O(q100) 8 q + 2 q^{2} - 4 q^{3} - 8 q^{4} - 4 q^{5} - 4 q^{6} + 6 q^{7} + 6 q^{8} - 4 q^{9} - q^{10} - 8 q^{12} - 18 q^{14} + 8 q^{15} - 20 q^{16} - 12 q^{17} + 2 q^{18} + 4 q^{19} + 88 q^{20} + 3 q^{21} - 48 q^{22}+ \cdots + 43 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x7+2x64x5+x48x3+8x28x+16 x^{8} - x^{7} + 2x^{6} - 4x^{5} + x^{4} - 8x^{3} + 8x^{2} - 8x + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν7ν6+7ν3+6ν2+8ν8)/8 ( -\nu^{7} - \nu^{6} + 7\nu^{3} + 6\nu^{2} + 8\nu - 8 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν7+ν62ν5+4ν4ν3+8ν28ν+8)/8 ( -\nu^{7} + \nu^{6} - 2\nu^{5} + 4\nu^{4} - \nu^{3} + 8\nu^{2} - 8\nu + 8 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν73ν5ν3+7ν2+2ν+16)/4 ( -\nu^{7} - 3\nu^{5} - \nu^{3} + 7\nu^{2} + 2\nu + 16 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν7+ν6+4ν5+ν310ν28ν16)/4 ( \nu^{7} + \nu^{6} + 4\nu^{5} + \nu^{3} - 10\nu^{2} - 8\nu - 16 ) / 4 Copy content Toggle raw display
β6\beta_{6}== (3ν7+ν6+6ν5+3ν320ν24ν32)/8 ( 3\nu^{7} + \nu^{6} + 6\nu^{5} + 3\nu^{3} - 20\nu^{2} - 4\nu - 32 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7+2ν5ν4+ν35ν2+ν8)/2 ( \nu^{7} + 2\nu^{5} - \nu^{4} + \nu^{3} - 5\nu^{2} + \nu - 8 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7β6+β31 \beta_{7} - \beta_{6} + \beta_{3} - 1 Copy content Toggle raw display
ν3\nu^{3}== β6+β4+β2β1+1 \beta_{6} + \beta_{4} + \beta_{2} - \beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β7+β6β52β4+β3+β1+3 -\beta_{7} + \beta_{6} - \beta_{5} - 2\beta_{4} + \beta_{3} + \beta _1 + 3 Copy content Toggle raw display
ν5\nu^{5}== β73β6+β52β4+β3+2β1+3 \beta_{7} - 3\beta_{6} + \beta_{5} - 2\beta_{4} + \beta_{3} + 2\beta _1 + 3 Copy content Toggle raw display
ν6\nu^{6}== 2β7+3β5+6β4+2β3+4β16 2\beta_{7} + 3\beta_{5} + 6\beta_{4} + 2\beta_{3} + 4\beta _1 - 6 Copy content Toggle raw display
ν7\nu^{7}== 4β7+β63β5+β4+4β3β23β11 4\beta_{7} + \beta_{6} - 3\beta_{5} + \beta_{4} + 4\beta_{3} - \beta_{2} - 3\beta _1 - 1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 1+β4-1 + \beta_{4} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
58.1
−0.139771 1.40729i
−1.06969 + 0.925071i
1.41379 0.0347146i
0.295677 + 1.38296i
−0.139771 + 1.40729i
−1.06969 0.925071i
1.41379 + 0.0347146i
0.295677 1.38296i
−1.28863 + 2.23198i −0.500000 0.866025i −2.32116 4.02036i −1.82116 + 3.15434i 2.57727 0.967478 + 2.46252i 6.80995 −0.500000 + 0.866025i −4.69361 8.12957i
58.2 0.266288 0.461225i −0.500000 0.866025i 0.858181 + 1.48641i 1.35818 2.35244i −0.532576 2.59189 + 0.531122i 1.97925 −0.500000 + 0.866025i −0.723335 1.25285i
58.3 0.676830 1.17230i −0.500000 0.866025i 0.0838024 + 0.145150i 0.583802 1.01118i −1.35366 1.40697 + 2.24063i 2.93420 −0.500000 + 0.866025i −0.790270 1.36879i
58.4 1.34552 2.33050i −0.500000 0.866025i −2.62083 4.53941i −2.12083 + 3.67338i −2.69103 −1.96634 1.77017i −8.72340 −0.500000 + 0.866025i 5.70721 + 9.88518i
172.1 −1.28863 2.23198i −0.500000 + 0.866025i −2.32116 + 4.02036i −1.82116 3.15434i 2.57727 0.967478 2.46252i 6.80995 −0.500000 0.866025i −4.69361 + 8.12957i
172.2 0.266288 + 0.461225i −0.500000 + 0.866025i 0.858181 1.48641i 1.35818 + 2.35244i −0.532576 2.59189 0.531122i 1.97925 −0.500000 0.866025i −0.723335 + 1.25285i
172.3 0.676830 + 1.17230i −0.500000 + 0.866025i 0.0838024 0.145150i 0.583802 + 1.01118i −1.35366 1.40697 2.24063i 2.93420 −0.500000 0.866025i −0.790270 + 1.36879i
172.4 1.34552 + 2.33050i −0.500000 + 0.866025i −2.62083 + 4.53941i −2.12083 3.67338i −2.69103 −1.96634 + 1.77017i −8.72340 −0.500000 0.866025i 5.70721 9.88518i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 58.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.j.e 8
3.b odd 2 1 1197.2.j.i 8
7.c even 3 1 inner 399.2.j.e 8
7.c even 3 1 2793.2.a.bb 4
7.d odd 6 1 2793.2.a.z 4
21.g even 6 1 8379.2.a.ca 4
21.h odd 6 1 1197.2.j.i 8
21.h odd 6 1 8379.2.a.bz 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.e 8 1.a even 1 1 trivial
399.2.j.e 8 7.c even 3 1 inner
1197.2.j.i 8 3.b odd 2 1
1197.2.j.i 8 21.h odd 6 1
2793.2.a.z 4 7.d odd 6 1
2793.2.a.bb 4 7.c even 3 1
8379.2.a.bz 4 21.h odd 6 1
8379.2.a.ca 4 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T282T27+10T2614T25+67T2498T23+139T2265T2+25 T_{2}^{8} - 2T_{2}^{7} + 10T_{2}^{6} - 14T_{2}^{5} + 67T_{2}^{4} - 98T_{2}^{3} + 139T_{2}^{2} - 65T_{2} + 25 acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T82T7++25 T^{8} - 2 T^{7} + \cdots + 25 Copy content Toggle raw display
33 (T2+T+1)4 (T^{2} + T + 1)^{4} Copy content Toggle raw display
55 T8+4T7++2401 T^{8} + 4 T^{7} + \cdots + 2401 Copy content Toggle raw display
77 T86T7++2401 T^{8} - 6 T^{7} + \cdots + 2401 Copy content Toggle raw display
1111 T8+42T6++114921 T^{8} + 42 T^{6} + \cdots + 114921 Copy content Toggle raw display
1313 (T442T2++339)2 (T^{4} - 42 T^{2} + \cdots + 339)^{2} Copy content Toggle raw display
1717 (T2+3T+9)4 (T^{2} + 3 T + 9)^{4} Copy content Toggle raw display
1919 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
2323 T85T7++1225 T^{8} - 5 T^{7} + \cdots + 1225 Copy content Toggle raw display
2929 (T4+16T3+1379)2 (T^{4} + 16 T^{3} + \cdots - 1379)^{2} Copy content Toggle raw display
3131 T8+23T7++648025 T^{8} + 23 T^{7} + \cdots + 648025 Copy content Toggle raw display
3737 T8T7++49 T^{8} - T^{7} + \cdots + 49 Copy content Toggle raw display
4141 (T4+5T3++619)2 (T^{4} + 5 T^{3} + \cdots + 619)^{2} Copy content Toggle raw display
4343 (T45T3++211)2 (T^{4} - 5 T^{3} + \cdots + 211)^{2} Copy content Toggle raw display
4747 T8+6T7++1071225 T^{8} + 6 T^{7} + \cdots + 1071225 Copy content Toggle raw display
5353 T812T7++9801 T^{8} - 12 T^{7} + \cdots + 9801 Copy content Toggle raw display
5959 T815T7++690561 T^{8} - 15 T^{7} + \cdots + 690561 Copy content Toggle raw display
6161 T8+7T7++49 T^{8} + 7 T^{7} + \cdots + 49 Copy content Toggle raw display
6767 T8+17T7++67092481 T^{8} + 17 T^{7} + \cdots + 67092481 Copy content Toggle raw display
7171 (T4+12T3+3045)2 (T^{4} + 12 T^{3} + \cdots - 3045)^{2} Copy content Toggle raw display
7373 T85T7++737881 T^{8} - 5 T^{7} + \cdots + 737881 Copy content Toggle raw display
7979 T8+3T7++50168889 T^{8} + 3 T^{7} + \cdots + 50168889 Copy content Toggle raw display
8383 (T4+14T3++367)2 (T^{4} + 14 T^{3} + \cdots + 367)^{2} Copy content Toggle raw display
8989 T8+7T7++2758921 T^{8} + 7 T^{7} + \cdots + 2758921 Copy content Toggle raw display
9797 (T4T336T2++43)2 (T^{4} - T^{3} - 36 T^{2} + \cdots + 43)^{2} Copy content Toggle raw display
show more
show less