L(s) = 1 | + 32·2-s + 1.02e3·4-s − 3.12e3·5-s − 2.68e4·7-s + 3.27e4·8-s + 5.90e4·9-s − 1.00e5·10-s + 3.21e5·11-s + 6.82e5·13-s − 8.60e5·14-s + 1.04e6·16-s + 1.88e6·18-s − 1.28e6·19-s − 3.20e6·20-s + 1.02e7·22-s + 1.77e6·23-s + 9.76e6·25-s + 2.18e7·26-s − 2.75e7·28-s + 3.35e7·32-s + 8.40e7·35-s + 6.04e7·36-s − 1.12e8·37-s − 4.12e7·38-s − 1.02e8·40-s − 6.11e5·41-s + 3.28e8·44-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 5-s − 1.59·7-s + 8-s + 9-s − 10-s + 1.99·11-s + 1.83·13-s − 1.59·14-s + 16-s + 18-s − 0.520·19-s − 20-s + 1.99·22-s + 0.275·23-s + 25-s + 1.83·26-s − 1.59·28-s + 32-s + 1.59·35-s + 36-s − 1.62·37-s − 0.520·38-s − 40-s − 0.00527·41-s + 1.99·44-s + ⋯ |
Λ(s)=(=(40s/2ΓC(s)L(s)Λ(11−s)
Λ(s)=(=(40s/2ΓC(s+5)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
40
= 23⋅5
|
Sign: |
1
|
Analytic conductor: |
25.4142 |
Root analytic conductor: |
5.04125 |
Motivic weight: |
10 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ40(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 40, ( :5), 1)
|
Particular Values
L(211) |
≈ |
3.484396828 |
L(21) |
≈ |
3.484396828 |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p5T |
| 5 | 1+p5T |
good | 3 | (1−p5T)(1+p5T) |
| 7 | 1+26886T+p10T2 |
| 11 | 1−321102T+p10T2 |
| 13 | 1−682086T+p10T2 |
| 17 | (1−p5T)(1+p5T) |
| 19 | 1+1288802T+p10T2 |
| 23 | 1−1772186T+p10T2 |
| 29 | (1−p5T)(1+p5T) |
| 31 | (1−p5T)(1+p5T) |
| 37 | 1+112652586T+p10T2 |
| 41 | 1+611598T+p10T2 |
| 43 | (1−p5T)(1+p5T) |
| 47 | 1−222705514T+p10T2 |
| 53 | 1−552886486T+p10T2 |
| 59 | 1+646632402T+p10T2 |
| 61 | (1−p5T)(1+p5T) |
| 67 | (1−p5T)(1+p5T) |
| 71 | (1−p5T)(1+p5T) |
| 73 | (1−p5T)(1+p5T) |
| 79 | (1−p5T)(1+p5T) |
| 83 | (1−p5T)(1+p5T) |
| 89 | 1−5417714898T+p10T2 |
| 97 | (1−p5T)(1+p5T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.76553475858875280288932855035, −12.73946846592560551657269579053, −11.86897117581987799054642231443, −10.58660702724215720709017805445, −8.945206105222637012804815076152, −6.97087349537319414664087226827, −6.31427518913810964724375156592, −4.00679183679950424192685361831, −3.55651034573834383959461642706, −1.17161597705916422204989183659,
1.17161597705916422204989183659, 3.55651034573834383959461642706, 4.00679183679950424192685361831, 6.31427518913810964724375156592, 6.97087349537319414664087226827, 8.945206105222637012804815076152, 10.58660702724215720709017805445, 11.86897117581987799054642231443, 12.73946846592560551657269579053, 13.76553475858875280288932855035