Properties

Label 2-40-40.19-c10-0-31
Degree $2$
Conductor $40$
Sign $1$
Analytic cond. $25.4142$
Root an. cond. $5.04125$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 1.02e3·4-s − 3.12e3·5-s − 2.68e4·7-s + 3.27e4·8-s + 5.90e4·9-s − 1.00e5·10-s + 3.21e5·11-s + 6.82e5·13-s − 8.60e5·14-s + 1.04e6·16-s + 1.88e6·18-s − 1.28e6·19-s − 3.20e6·20-s + 1.02e7·22-s + 1.77e6·23-s + 9.76e6·25-s + 2.18e7·26-s − 2.75e7·28-s + 3.35e7·32-s + 8.40e7·35-s + 6.04e7·36-s − 1.12e8·37-s − 4.12e7·38-s − 1.02e8·40-s − 6.11e5·41-s + 3.28e8·44-s + ⋯
L(s)  = 1  + 2-s + 4-s − 5-s − 1.59·7-s + 8-s + 9-s − 10-s + 1.99·11-s + 1.83·13-s − 1.59·14-s + 16-s + 18-s − 0.520·19-s − 20-s + 1.99·22-s + 0.275·23-s + 25-s + 1.83·26-s − 1.59·28-s + 32-s + 1.59·35-s + 36-s − 1.62·37-s − 0.520·38-s − 40-s − 0.00527·41-s + 1.99·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40\)    =    \(2^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.4142\)
Root analytic conductor: \(5.04125\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: $\chi_{40} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40,\ (\ :5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(3.484396828\)
\(L(\frac12)\) \(\approx\) \(3.484396828\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{5} T \)
5 \( 1 + p^{5} T \)
good3 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
7 \( 1 + 26886 T + p^{10} T^{2} \)
11 \( 1 - 321102 T + p^{10} T^{2} \)
13 \( 1 - 682086 T + p^{10} T^{2} \)
17 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
19 \( 1 + 1288802 T + p^{10} T^{2} \)
23 \( 1 - 1772186 T + p^{10} T^{2} \)
29 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
31 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
37 \( 1 + 112652586 T + p^{10} T^{2} \)
41 \( 1 + 611598 T + p^{10} T^{2} \)
43 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
47 \( 1 - 222705514 T + p^{10} T^{2} \)
53 \( 1 - 552886486 T + p^{10} T^{2} \)
59 \( 1 + 646632402 T + p^{10} T^{2} \)
61 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
67 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
71 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
73 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
79 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
83 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
89 \( 1 - 5417714898 T + p^{10} T^{2} \)
97 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76553475858875280288932855035, −12.73946846592560551657269579053, −11.86897117581987799054642231443, −10.58660702724215720709017805445, −8.945206105222637012804815076152, −6.97087349537319414664087226827, −6.31427518913810964724375156592, −4.00679183679950424192685361831, −3.55651034573834383959461642706, −1.17161597705916422204989183659, 1.17161597705916422204989183659, 3.55651034573834383959461642706, 4.00679183679950424192685361831, 6.31427518913810964724375156592, 6.97087349537319414664087226827, 8.945206105222637012804815076152, 10.58660702724215720709017805445, 11.86897117581987799054642231443, 12.73946846592560551657269579053, 13.76553475858875280288932855035

Graph of the $Z$-function along the critical line