Properties

Label 40.11.e.b
Level 4040
Weight 1111
Character orbit 40.e
Self dual yes
Analytic conductor 25.41425.414
Analytic rank 00
Dimension 11
CM discriminant -40
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,11,Mod(19,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.19");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: N N == 40=235 40 = 2^{3} \cdot 5
Weight: k k == 11 11
Character orbit: [χ][\chi] == 40.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 25.414290106925.4142901069
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+32q2+1024q43125q526886q7+32768q8+59049q9100000q10+321102q11+682086q13860352q14+1048576q16+1889568q181288802q193200000q20++18960751998q99+O(q100) q + 32 q^{2} + 1024 q^{4} - 3125 q^{5} - 26886 q^{7} + 32768 q^{8} + 59049 q^{9} - 100000 q^{10} + 321102 q^{11} + 682086 q^{13} - 860352 q^{14} + 1048576 q^{16} + 1889568 q^{18} - 1288802 q^{19} - 3200000 q^{20}+ \cdots + 18960751998 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/40Z)×\left(\mathbb{Z}/40\mathbb{Z}\right)^\times.

nn 1717 2121 3131
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
0
32.0000 0 1024.00 −3125.00 0 −26886.0 32768.0 59049.0 −100000.
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by Q(10)\Q(\sqrt{-10})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.11.e.b yes 1
4.b odd 2 1 160.11.e.a 1
5.b even 2 1 40.11.e.a 1
8.b even 2 1 160.11.e.b 1
8.d odd 2 1 40.11.e.a 1
20.d odd 2 1 160.11.e.b 1
40.e odd 2 1 CM 40.11.e.b yes 1
40.f even 2 1 160.11.e.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.11.e.a 1 5.b even 2 1
40.11.e.a 1 8.d odd 2 1
40.11.e.b yes 1 1.a even 1 1 trivial
40.11.e.b yes 1 40.e odd 2 1 CM
160.11.e.a 1 4.b odd 2 1
160.11.e.a 1 40.f even 2 1
160.11.e.b 1 8.b even 2 1
160.11.e.b 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S11new(40,[χ])S_{11}^{\mathrm{new}}(40, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7+26886 T_{7} + 26886 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T32 T - 32 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+3125 T + 3125 Copy content Toggle raw display
77 T+26886 T + 26886 Copy content Toggle raw display
1111 T321102 T - 321102 Copy content Toggle raw display
1313 T682086 T - 682086 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+1288802 T + 1288802 Copy content Toggle raw display
2323 T1772186 T - 1772186 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T+112652586 T + 112652586 Copy content Toggle raw display
4141 T+611598 T + 611598 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T222705514 T - 222705514 Copy content Toggle raw display
5353 T552886486 T - 552886486 Copy content Toggle raw display
5959 T+646632402 T + 646632402 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T5417714898 T - 5417714898 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less