Properties

Label 160.11.e.b
Level $160$
Weight $11$
Character orbit 160.e
Self dual yes
Analytic conductor $101.657$
Analytic rank $0$
Dimension $1$
CM discriminant -40
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,11,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 160.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.657160428\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3125 q^{5} - 26886 q^{7} + 59049 q^{9} - 321102 q^{11} - 682086 q^{13} + 1288802 q^{19} + 1772186 q^{23} + 9765625 q^{25} - 84018750 q^{35} + 112652586 q^{37} - 611598 q^{41} + 184528125 q^{45} + 222705514 q^{47}+ \cdots - 18960751998 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0
0 0 0 3125.00 0 −26886.0 0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.11.e.b 1
4.b odd 2 1 40.11.e.a 1
5.b even 2 1 160.11.e.a 1
8.b even 2 1 40.11.e.b yes 1
8.d odd 2 1 160.11.e.a 1
20.d odd 2 1 40.11.e.b yes 1
40.e odd 2 1 CM 160.11.e.b 1
40.f even 2 1 40.11.e.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.11.e.a 1 4.b odd 2 1
40.11.e.a 1 40.f even 2 1
40.11.e.b yes 1 8.b even 2 1
40.11.e.b yes 1 20.d odd 2 1
160.11.e.a 1 5.b even 2 1
160.11.e.a 1 8.d odd 2 1
160.11.e.b 1 1.a even 1 1 trivial
160.11.e.b 1 40.e odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{11}^{\mathrm{new}}(160, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} + 26886 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 3125 \) Copy content Toggle raw display
$7$ \( T + 26886 \) Copy content Toggle raw display
$11$ \( T + 321102 \) Copy content Toggle raw display
$13$ \( T + 682086 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 1288802 \) Copy content Toggle raw display
$23$ \( T - 1772186 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 112652586 \) Copy content Toggle raw display
$41$ \( T + 611598 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 222705514 \) Copy content Toggle raw display
$53$ \( T + 552886486 \) Copy content Toggle raw display
$59$ \( T - 646632402 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 5417714898 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less