Properties

Label 160.11.e.b
Level 160160
Weight 1111
Character orbit 160.e
Self dual yes
Analytic conductor 101.657101.657
Analytic rank 00
Dimension 11
CM discriminant -40
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,11,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 11 11
Character orbit: [χ][\chi] == 160.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 101.657160428101.657160428
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3125q526886q7+59049q9321102q11682086q13+1288802q19+1772186q23+9765625q2584018750q35+112652586q37611598q41+184528125q45+222705514q47+18960751998q99+O(q100) q + 3125 q^{5} - 26886 q^{7} + 59049 q^{9} - 321102 q^{11} - 682086 q^{13} + 1288802 q^{19} + 1772186 q^{23} + 9765625 q^{25} - 84018750 q^{35} + 112652586 q^{37} - 611598 q^{41} + 184528125 q^{45} + 222705514 q^{47}+ \cdots - 18960751998 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
0
0 0 0 3125.00 0 −26886.0 0 59049.0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by Q(10)\Q(\sqrt{-10})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.11.e.b 1
4.b odd 2 1 40.11.e.a 1
5.b even 2 1 160.11.e.a 1
8.b even 2 1 40.11.e.b yes 1
8.d odd 2 1 160.11.e.a 1
20.d odd 2 1 40.11.e.b yes 1
40.e odd 2 1 CM 160.11.e.b 1
40.f even 2 1 40.11.e.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.11.e.a 1 4.b odd 2 1
40.11.e.a 1 40.f even 2 1
40.11.e.b yes 1 8.b even 2 1
40.11.e.b yes 1 20.d odd 2 1
160.11.e.a 1 5.b even 2 1
160.11.e.a 1 8.d odd 2 1
160.11.e.b 1 1.a even 1 1 trivial
160.11.e.b 1 40.e odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S11new(160,[χ])S_{11}^{\mathrm{new}}(160, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7+26886 T_{7} + 26886 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T3125 T - 3125 Copy content Toggle raw display
77 T+26886 T + 26886 Copy content Toggle raw display
1111 T+321102 T + 321102 Copy content Toggle raw display
1313 T+682086 T + 682086 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T1288802 T - 1288802 Copy content Toggle raw display
2323 T1772186 T - 1772186 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T112652586 T - 112652586 Copy content Toggle raw display
4141 T+611598 T + 611598 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T222705514 T - 222705514 Copy content Toggle raw display
5353 T+552886486 T + 552886486 Copy content Toggle raw display
5959 T646632402 T - 646632402 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T5417714898 T - 5417714898 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less