L(s) = 1 | + (0.809 − 0.587i)3-s + (−0.690 + 2.12i)5-s − 0.618·7-s + (−0.618 + 1.90i)9-s + (1.61 + 4.97i)11-s + (0.572 − 1.76i)13-s + (0.690 + 2.12i)15-s + (4.23 + 3.07i)17-s + (0.690 + 0.502i)19-s + (−0.500 + 0.363i)21-s + (−1.16 − 3.57i)23-s + (−4.04 − 2.93i)25-s + (1.54 + 4.75i)27-s + (2.92 − 2.12i)29-s + (−2.42 − 1.76i)31-s + ⋯ |
L(s) = 1 | + (0.467 − 0.339i)3-s + (−0.309 + 0.951i)5-s − 0.233·7-s + (−0.206 + 0.634i)9-s + (0.487 + 1.50i)11-s + (0.158 − 0.489i)13-s + (0.178 + 0.549i)15-s + (1.02 + 0.746i)17-s + (0.158 + 0.115i)19-s + (−0.109 + 0.0792i)21-s + (−0.242 − 0.746i)23-s + (−0.809 − 0.587i)25-s + (0.297 + 0.915i)27-s + (0.543 − 0.394i)29-s + (−0.435 − 0.316i)31-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.535−0.844i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(0.535−0.844i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.535−0.844i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), 0.535−0.844i)
|
Particular Values
L(1) |
≈ |
1.26113+0.693313i |
L(21) |
≈ |
1.26113+0.693313i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.690−2.12i)T |
good | 3 | 1+(−0.809+0.587i)T+(0.927−2.85i)T2 |
| 7 | 1+0.618T+7T2 |
| 11 | 1+(−1.61−4.97i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−0.572+1.76i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−4.23−3.07i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.690−0.502i)T+(5.87+18.0i)T2 |
| 23 | 1+(1.16+3.57i)T+(−18.6+13.5i)T2 |
| 29 | 1+(−2.92+2.12i)T+(8.96−27.5i)T2 |
| 31 | 1+(2.42+1.76i)T+(9.57+29.4i)T2 |
| 37 | 1+(0.0729−0.224i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.236−0.726i)T+(−33.1−24.0i)T2 |
| 43 | 1−4.85T+43T2 |
| 47 | 1+(−0.5+0.363i)T+(14.5−44.6i)T2 |
| 53 | 1+(−2.80+2.04i)T+(16.3−50.4i)T2 |
| 59 | 1+(−3.35+10.3i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−2.69−8.28i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−3.85−2.80i)T+(20.7+63.7i)T2 |
| 71 | 1+(5.35−3.88i)T+(21.9−67.5i)T2 |
| 73 | 1+(2.78+8.55i)T+(−59.0+42.9i)T2 |
| 79 | 1+(6.54−4.75i)T+(24.4−75.1i)T2 |
| 83 | 1+(5.04+3.66i)T+(25.6+78.9i)T2 |
| 89 | 1+(2.76+8.50i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−3.11+2.26i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41535371494637226609520112039, −10.35490414906394033419346201061, −9.843748913864362287029030510654, −8.444063948624921235690630365980, −7.64964169634672013110252444161, −6.93661553329277548249277608163, −5.81593469294710744862185196303, −4.35483719039384631653525408076, −3.14731942388278701332579685067, −1.98819394678751910442890975151,
0.971155834084136433971578650085, 3.17170174766898298690705606322, 3.93613951698086123769483032382, 5.29736920317658882506503356110, 6.24782377779695983774672907165, 7.59449742170499026996537561661, 8.675984357603885905740269507592, 9.090227335867207349068232064586, 9.975418250189045427373611926248, 11.37928188866988108406516717824