L(s) = 1 | + (0.809 − 0.587i)3-s + (−0.690 + 2.12i)5-s − 0.618·7-s + (−0.618 + 1.90i)9-s + (1.61 + 4.97i)11-s + (0.572 − 1.76i)13-s + (0.690 + 2.12i)15-s + (4.23 + 3.07i)17-s + (0.690 + 0.502i)19-s + (−0.500 + 0.363i)21-s + (−1.16 − 3.57i)23-s + (−4.04 − 2.93i)25-s + (1.54 + 4.75i)27-s + (2.92 − 2.12i)29-s + (−2.42 − 1.76i)31-s + ⋯ |
L(s) = 1 | + (0.467 − 0.339i)3-s + (−0.309 + 0.951i)5-s − 0.233·7-s + (−0.206 + 0.634i)9-s + (0.487 + 1.50i)11-s + (0.158 − 0.489i)13-s + (0.178 + 0.549i)15-s + (1.02 + 0.746i)17-s + (0.158 + 0.115i)19-s + (−0.109 + 0.0792i)21-s + (−0.242 − 0.746i)23-s + (−0.809 − 0.587i)25-s + (0.297 + 0.915i)27-s + (0.543 − 0.394i)29-s + (−0.435 − 0.316i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.535 - 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26113 + 0.693313i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26113 + 0.693313i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.690 - 2.12i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T + (0.927 - 2.85i)T^{2} \) |
| 7 | \( 1 + 0.618T + 7T^{2} \) |
| 11 | \( 1 + (-1.61 - 4.97i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-0.572 + 1.76i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-4.23 - 3.07i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.690 - 0.502i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (1.16 + 3.57i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (-2.92 + 2.12i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.42 + 1.76i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.0729 - 0.224i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.236 - 0.726i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 4.85T + 43T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.363i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.80 + 2.04i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.35 + 10.3i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.69 - 8.28i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-3.85 - 2.80i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (5.35 - 3.88i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.78 + 8.55i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (6.54 - 4.75i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.04 + 3.66i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (2.76 + 8.50i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-3.11 + 2.26i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41535371494637226609520112039, −10.35490414906394033419346201061, −9.843748913864362287029030510654, −8.444063948624921235690630365980, −7.64964169634672013110252444161, −6.93661553329277548249277608163, −5.81593469294710744862185196303, −4.35483719039384631653525408076, −3.14731942388278701332579685067, −1.98819394678751910442890975151,
0.971155834084136433971578650085, 3.17170174766898298690705606322, 3.93613951698086123769483032382, 5.29736920317658882506503356110, 6.24782377779695983774672907165, 7.59449742170499026996537561661, 8.675984357603885905740269507592, 9.090227335867207349068232064586, 9.975418250189045427373611926248, 11.37928188866988108406516717824