Properties

Label 400.2.u.b
Level 400400
Weight 22
Character orbit 400.u
Analytic conductor 3.1943.194
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(81,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 400.u (of order 55, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.194016080853.19401608085
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ103q3+(2ζ102+ζ102)q5+(ζ103+ζ102+1)q7+2ζ10q9+(2ζ1034ζ102+2)q11++(4ζ103+4ζ1024)q99+O(q100) q + \zeta_{10}^{3} q^{3} + ( - 2 \zeta_{10}^{2} + \zeta_{10} - 2) q^{5} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 1) q^{7} + 2 \zeta_{10} q^{9} + (2 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + \cdots - 2) q^{11}+ \cdots + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q35q5+2q7+2q9+2q11+9q13+5q15+8q17+5q192q21+11q235q255q27+5q293q31+8q335q357q379q39+24q99+O(q100) 4 q + q^{3} - 5 q^{5} + 2 q^{7} + 2 q^{9} + 2 q^{11} + 9 q^{13} + 5 q^{15} + 8 q^{17} + 5 q^{19} - 2 q^{21} + 11 q^{23} - 5 q^{25} - 5 q^{27} + 5 q^{29} - 3 q^{31} + 8 q^{33} - 5 q^{35} - 7 q^{37} - 9 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 ζ103-\zeta_{10}^{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0 0.809017 0.587785i 0 −0.690983 + 2.12663i 0 −0.618034 0 −0.618034 + 1.90211i 0
161.1 0 −0.309017 + 0.951057i 0 −1.80902 1.31433i 0 1.61803 0 1.61803 + 1.17557i 0
241.1 0 −0.309017 0.951057i 0 −1.80902 + 1.31433i 0 1.61803 0 1.61803 1.17557i 0
321.1 0 0.809017 + 0.587785i 0 −0.690983 2.12663i 0 −0.618034 0 −0.618034 1.90211i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.2.u.b 4
4.b odd 2 1 25.2.d.a 4
12.b even 2 1 225.2.h.b 4
20.d odd 2 1 125.2.d.a 4
20.e even 4 2 125.2.e.a 8
25.d even 5 1 inner 400.2.u.b 4
25.d even 5 1 10000.2.a.c 2
25.e even 10 1 10000.2.a.l 2
100.h odd 10 1 125.2.d.a 4
100.h odd 10 1 625.2.a.c 2
100.h odd 10 2 625.2.d.b 4
100.j odd 10 1 25.2.d.a 4
100.j odd 10 1 625.2.a.b 2
100.j odd 10 2 625.2.d.h 4
100.l even 20 2 125.2.e.a 8
100.l even 20 2 625.2.b.a 4
100.l even 20 4 625.2.e.c 8
300.n even 10 1 225.2.h.b 4
300.n even 10 1 5625.2.a.f 2
300.r even 10 1 5625.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.2.d.a 4 4.b odd 2 1
25.2.d.a 4 100.j odd 10 1
125.2.d.a 4 20.d odd 2 1
125.2.d.a 4 100.h odd 10 1
125.2.e.a 8 20.e even 4 2
125.2.e.a 8 100.l even 20 2
225.2.h.b 4 12.b even 2 1
225.2.h.b 4 300.n even 10 1
400.2.u.b 4 1.a even 1 1 trivial
400.2.u.b 4 25.d even 5 1 inner
625.2.a.b 2 100.j odd 10 1
625.2.a.c 2 100.h odd 10 1
625.2.b.a 4 100.l even 20 2
625.2.d.b 4 100.h odd 10 2
625.2.d.h 4 100.j odd 10 2
625.2.e.c 8 100.l even 20 4
5625.2.a.d 2 300.r even 10 1
5625.2.a.f 2 300.n even 10 1
10000.2.a.c 2 25.d even 5 1
10000.2.a.l 2 25.e even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34T33+T32T3+1 T_{3}^{4} - T_{3}^{3} + T_{3}^{2} - T_{3} + 1 acting on S2new(400,[χ])S_{2}^{\mathrm{new}}(400, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
55 T4+5T3++25 T^{4} + 5 T^{3} + \cdots + 25 Copy content Toggle raw display
77 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
1111 T42T3++16 T^{4} - 2 T^{3} + \cdots + 16 Copy content Toggle raw display
1313 T49T3++81 T^{4} - 9 T^{3} + \cdots + 81 Copy content Toggle raw display
1717 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
1919 T45T3++25 T^{4} - 5 T^{3} + \cdots + 25 Copy content Toggle raw display
2323 T411T3++961 T^{4} - 11 T^{3} + \cdots + 961 Copy content Toggle raw display
2929 T45T3++25 T^{4} - 5 T^{3} + \cdots + 25 Copy content Toggle raw display
3131 T4+3T3++81 T^{4} + 3 T^{3} + \cdots + 81 Copy content Toggle raw display
3737 T4+7T3++1 T^{4} + 7 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
4343 (T23T9)2 (T^{2} - 3 T - 9)^{2} Copy content Toggle raw display
4747 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
5353 T49T3++361 T^{4} - 9 T^{3} + \cdots + 361 Copy content Toggle raw display
5959 T4+90T2++2025 T^{4} + 90 T^{2} + \cdots + 2025 Copy content Toggle raw display
6161 T413T3++1681 T^{4} - 13 T^{3} + \cdots + 1681 Copy content Toggle raw display
6767 T42T3++1936 T^{4} - 2 T^{3} + \cdots + 1936 Copy content Toggle raw display
7171 T4+8T3++841 T^{4} + 8 T^{3} + \cdots + 841 Copy content Toggle raw display
7373 T49T3++6561 T^{4} - 9 T^{3} + \cdots + 6561 Copy content Toggle raw display
7979 T4+15T3++625 T^{4} + 15 T^{3} + \cdots + 625 Copy content Toggle raw display
8383 T4+9T3++121 T^{4} + 9 T^{3} + \cdots + 121 Copy content Toggle raw display
8989 T4+20T3++6400 T^{4} + 20 T^{3} + \cdots + 6400 Copy content Toggle raw display
9797 T48T3++121 T^{4} - 8 T^{3} + \cdots + 121 Copy content Toggle raw display
show more
show less