L(s) = 1 | + (1.31 + 1.81i)3-s + (2.19 + 0.432i)5-s + 1.85i·7-s + (−0.624 + 1.92i)9-s + (0.681 + 2.09i)11-s + (−4.55 − 1.47i)13-s + (2.10 + 4.54i)15-s + (3.76 − 5.17i)17-s + (−3.01 − 2.18i)19-s + (−3.37 + 2.44i)21-s + (0.905 − 0.294i)23-s + (4.62 + 1.89i)25-s + (2.08 − 0.677i)27-s + (−4.71 + 3.42i)29-s + (−5.42 − 3.94i)31-s + ⋯ |
L(s) = 1 | + (0.760 + 1.04i)3-s + (0.981 + 0.193i)5-s + 0.702i·7-s + (−0.208 + 0.640i)9-s + (0.205 + 0.632i)11-s + (−1.26 − 0.410i)13-s + (0.543 + 1.17i)15-s + (0.912 − 1.25i)17-s + (−0.690 − 0.501i)19-s + (−0.735 + 0.534i)21-s + (0.188 − 0.0613i)23-s + (0.925 + 0.379i)25-s + (0.401 − 0.130i)27-s + (−0.875 + 0.635i)29-s + (−0.974 − 0.708i)31-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.320−0.947i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(0.320−0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.320−0.947i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), 0.320−0.947i)
|
Particular Values
L(1) |
≈ |
1.58770+1.13864i |
L(21) |
≈ |
1.58770+1.13864i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2.19−0.432i)T |
good | 3 | 1+(−1.31−1.81i)T+(−0.927+2.85i)T2 |
| 7 | 1−1.85iT−7T2 |
| 11 | 1+(−0.681−2.09i)T+(−8.89+6.46i)T2 |
| 13 | 1+(4.55+1.47i)T+(10.5+7.64i)T2 |
| 17 | 1+(−3.76+5.17i)T+(−5.25−16.1i)T2 |
| 19 | 1+(3.01+2.18i)T+(5.87+18.0i)T2 |
| 23 | 1+(−0.905+0.294i)T+(18.6−13.5i)T2 |
| 29 | 1+(4.71−3.42i)T+(8.96−27.5i)T2 |
| 31 | 1+(5.42+3.94i)T+(9.57+29.4i)T2 |
| 37 | 1+(−9.69−3.14i)T+(29.9+21.7i)T2 |
| 41 | 1+(1.82−5.63i)T+(−33.1−24.0i)T2 |
| 43 | 1−3.96iT−43T2 |
| 47 | 1+(5.93+8.16i)T+(−14.5+44.6i)T2 |
| 53 | 1+(2.46+3.39i)T+(−16.3+50.4i)T2 |
| 59 | 1+(1.86−5.73i)T+(−47.7−34.6i)T2 |
| 61 | 1+(1.13+3.49i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−8.45+11.6i)T+(−20.7−63.7i)T2 |
| 71 | 1+(−7.82+5.68i)T+(21.9−67.5i)T2 |
| 73 | 1+(−3.43+1.11i)T+(59.0−42.9i)T2 |
| 79 | 1+(9.13−6.63i)T+(24.4−75.1i)T2 |
| 83 | 1+(−4.08+5.62i)T+(−25.6−78.9i)T2 |
| 89 | 1+(3.23+9.96i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−0.275−0.379i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30168013240661315648785233189, −10.15078168810430520494440893864, −9.513329720530762687329862304217, −9.218811735828105961461063354142, −7.88448105584927543759585836561, −6.75234320474159363613566342902, −5.40022712144954876108510453652, −4.69287424095010337300717996346, −3.14067806977795165504308495475, −2.28514943398822762801082156367,
1.41197748728801755065443900511, 2.45193901396339050855241719125, 3.92728542943427841604379899167, 5.48158322332265141850482173242, 6.49476245249323919896548169197, 7.42957172380289241122512258791, 8.208806364608772261606919833156, 9.204636222119928996880952907929, 10.08515944721085353085846536465, 10.99465325101487791731271604438