Properties

Label 400.2.y.d.369.7
Level $400$
Weight $2$
Character 400.369
Analytic conductor $3.194$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(129,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.y (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 369.7
Character \(\chi\) \(=\) 400.369
Dual form 400.2.y.d.129.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31712 + 1.81286i) q^{3} +(2.19384 + 0.432536i) q^{5} +1.85909i q^{7} +(-0.624612 + 1.92236i) q^{9} +(0.681343 + 2.09696i) q^{11} +(-4.55205 - 1.47905i) q^{13} +(2.10542 + 4.54683i) q^{15} +(3.76158 - 5.17737i) q^{17} +(-3.01005 - 2.18693i) q^{19} +(-3.37028 + 2.44865i) q^{21} +(0.905170 - 0.294107i) q^{23} +(4.62582 + 1.89783i) q^{25} +(2.08578 - 0.677713i) q^{27} +(-4.71315 + 3.42430i) q^{29} +(-5.42789 - 3.94359i) q^{31} +(-2.90409 + 3.99713i) q^{33} +(-0.804125 + 4.07854i) q^{35} +(9.69306 + 3.14947i) q^{37} +(-3.31429 - 10.2003i) q^{39} +(-1.82997 + 5.63206i) q^{41} +3.96247i q^{43} +(-2.20178 + 3.94717i) q^{45} +(-5.93038 - 8.16246i) q^{47} +3.54377 q^{49} +14.3403 q^{51} +(-2.46759 - 3.39634i) q^{53} +(0.587744 + 4.89509i) q^{55} -8.33725i q^{57} +(-1.86474 + 5.73908i) q^{59} +(-1.13650 - 3.49779i) q^{61} +(-3.57384 - 1.16121i) q^{63} +(-9.34670 - 5.21372i) q^{65} +(8.45537 - 11.6378i) q^{67} +(1.72540 + 1.25357i) q^{69} +(7.82527 - 5.68539i) q^{71} +(3.43698 - 1.11674i) q^{73} +(2.65228 + 10.8857i) q^{75} +(-3.89844 + 1.26668i) q^{77} +(-9.13049 + 6.63369i) q^{79} +(8.88160 + 6.45286i) q^{81} +(4.08493 - 5.62242i) q^{83} +(10.4917 - 9.73128i) q^{85} +(-12.4156 - 4.03407i) q^{87} +(-3.23757 - 9.96423i) q^{89} +(2.74969 - 8.46268i) q^{91} -15.0342i q^{93} +(-5.65762 - 6.09971i) q^{95} +(0.275879 + 0.379715i) q^{97} -4.45668 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{5} + 10 q^{9} - 6 q^{11} - 12 q^{15} + 6 q^{19} - 4 q^{21} + 30 q^{23} + 6 q^{25} - 2 q^{29} - 6 q^{31} - 8 q^{35} - 40 q^{37} + 12 q^{39} - 12 q^{45} + 20 q^{47} - 60 q^{49} + 60 q^{51} - 30 q^{53}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.31712 + 1.81286i 0.760441 + 1.04666i 0.997177 + 0.0750833i \(0.0239223\pi\)
−0.236736 + 0.971574i \(0.576078\pi\)
\(4\) 0 0
\(5\) 2.19384 + 0.432536i 0.981113 + 0.193436i
\(6\) 0 0
\(7\) 1.85909i 0.702671i 0.936250 + 0.351336i \(0.114272\pi\)
−0.936250 + 0.351336i \(0.885728\pi\)
\(8\) 0 0
\(9\) −0.624612 + 1.92236i −0.208204 + 0.640786i
\(10\) 0 0
\(11\) 0.681343 + 2.09696i 0.205433 + 0.632257i 0.999695 + 0.0246823i \(0.00785741\pi\)
−0.794263 + 0.607575i \(0.792143\pi\)
\(12\) 0 0
\(13\) −4.55205 1.47905i −1.26251 0.410215i −0.400122 0.916462i \(-0.631032\pi\)
−0.862388 + 0.506247i \(0.831032\pi\)
\(14\) 0 0
\(15\) 2.10542 + 4.54683i 0.543617 + 1.17399i
\(16\) 0 0
\(17\) 3.76158 5.17737i 0.912317 1.25570i −0.0540522 0.998538i \(-0.517214\pi\)
0.966369 0.257159i \(-0.0827863\pi\)
\(18\) 0 0
\(19\) −3.01005 2.18693i −0.690552 0.501715i 0.186289 0.982495i \(-0.440354\pi\)
−0.876842 + 0.480779i \(0.840354\pi\)
\(20\) 0 0
\(21\) −3.37028 + 2.44865i −0.735456 + 0.534340i
\(22\) 0 0
\(23\) 0.905170 0.294107i 0.188741 0.0613256i −0.213121 0.977026i \(-0.568363\pi\)
0.401862 + 0.915700i \(0.368363\pi\)
\(24\) 0 0
\(25\) 4.62582 + 1.89783i 0.925165 + 0.379565i
\(26\) 0 0
\(27\) 2.08578 0.677713i 0.401409 0.130426i
\(28\) 0 0
\(29\) −4.71315 + 3.42430i −0.875210 + 0.635877i −0.931980 0.362510i \(-0.881920\pi\)
0.0567701 + 0.998387i \(0.481920\pi\)
\(30\) 0 0
\(31\) −5.42789 3.94359i −0.974878 0.708290i −0.0183199 0.999832i \(-0.505832\pi\)
−0.956558 + 0.291542i \(0.905832\pi\)
\(32\) 0 0
\(33\) −2.90409 + 3.99713i −0.505537 + 0.695812i
\(34\) 0 0
\(35\) −0.804125 + 4.07854i −0.135922 + 0.689400i
\(36\) 0 0
\(37\) 9.69306 + 3.14947i 1.59353 + 0.517769i 0.965496 0.260418i \(-0.0838602\pi\)
0.628033 + 0.778187i \(0.283860\pi\)
\(38\) 0 0
\(39\) −3.31429 10.2003i −0.530711 1.63336i
\(40\) 0 0
\(41\) −1.82997 + 5.63206i −0.285793 + 0.879580i 0.700367 + 0.713783i \(0.253020\pi\)
−0.986160 + 0.165797i \(0.946980\pi\)
\(42\) 0 0
\(43\) 3.96247i 0.604272i 0.953265 + 0.302136i \(0.0976996\pi\)
−0.953265 + 0.302136i \(0.902300\pi\)
\(44\) 0 0
\(45\) −2.20178 + 3.94717i −0.328223 + 0.588409i
\(46\) 0 0
\(47\) −5.93038 8.16246i −0.865034 1.19062i −0.980345 0.197288i \(-0.936786\pi\)
0.115311 0.993329i \(-0.463214\pi\)
\(48\) 0 0
\(49\) 3.54377 0.506253
\(50\) 0 0
\(51\) 14.3403 2.00805
\(52\) 0 0
\(53\) −2.46759 3.39634i −0.338949 0.466523i 0.605185 0.796085i \(-0.293099\pi\)
−0.944134 + 0.329562i \(0.893099\pi\)
\(54\) 0 0
\(55\) 0.587744 + 4.89509i 0.0792513 + 0.660053i
\(56\) 0 0
\(57\) 8.33725i 1.10430i
\(58\) 0 0
\(59\) −1.86474 + 5.73908i −0.242769 + 0.747165i 0.753227 + 0.657761i \(0.228496\pi\)
−0.995995 + 0.0894039i \(0.971504\pi\)
\(60\) 0 0
\(61\) −1.13650 3.49779i −0.145514 0.447847i 0.851563 0.524253i \(-0.175655\pi\)
−0.997077 + 0.0764064i \(0.975655\pi\)
\(62\) 0 0
\(63\) −3.57384 1.16121i −0.450262 0.146299i
\(64\) 0 0
\(65\) −9.34670 5.21372i −1.15931 0.646682i
\(66\) 0 0
\(67\) 8.45537 11.6378i 1.03299 1.42179i 0.130307 0.991474i \(-0.458404\pi\)
0.902680 0.430312i \(-0.141596\pi\)
\(68\) 0 0
\(69\) 1.72540 + 1.25357i 0.207713 + 0.150913i
\(70\) 0 0
\(71\) 7.82527 5.68539i 0.928688 0.674732i −0.0169829 0.999856i \(-0.505406\pi\)
0.945671 + 0.325124i \(0.105406\pi\)
\(72\) 0 0
\(73\) 3.43698 1.11674i 0.402268 0.130705i −0.100894 0.994897i \(-0.532170\pi\)
0.503161 + 0.864193i \(0.332170\pi\)
\(74\) 0 0
\(75\) 2.65228 + 10.8857i 0.306258 + 1.25697i
\(76\) 0 0
\(77\) −3.89844 + 1.26668i −0.444269 + 0.144352i
\(78\) 0 0
\(79\) −9.13049 + 6.63369i −1.02726 + 0.746348i −0.967759 0.251880i \(-0.918951\pi\)
−0.0595020 + 0.998228i \(0.518951\pi\)
\(80\) 0 0
\(81\) 8.88160 + 6.45286i 0.986844 + 0.716984i
\(82\) 0 0
\(83\) 4.08493 5.62242i 0.448379 0.617141i −0.523669 0.851922i \(-0.675437\pi\)
0.972048 + 0.234781i \(0.0754371\pi\)
\(84\) 0 0
\(85\) 10.4917 9.73128i 1.13798 1.05551i
\(86\) 0 0
\(87\) −12.4156 4.03407i −1.33109 0.432498i
\(88\) 0 0
\(89\) −3.23757 9.96423i −0.343182 1.05621i −0.962550 0.271105i \(-0.912611\pi\)
0.619368 0.785101i \(-0.287389\pi\)
\(90\) 0 0
\(91\) 2.74969 8.46268i 0.288246 0.887130i
\(92\) 0 0
\(93\) 15.0342i 1.55898i
\(94\) 0 0
\(95\) −5.65762 6.09971i −0.580460 0.625817i
\(96\) 0 0
\(97\) 0.275879 + 0.379715i 0.0280113 + 0.0385542i 0.822793 0.568341i \(-0.192415\pi\)
−0.794782 + 0.606895i \(0.792415\pi\)
\(98\) 0 0
\(99\) −4.45668 −0.447913
\(100\) 0 0
\(101\) −1.01547 −0.101043 −0.0505214 0.998723i \(-0.516088\pi\)
−0.0505214 + 0.998723i \(0.516088\pi\)
\(102\) 0 0
\(103\) −9.68658 13.3324i −0.954447 1.31368i −0.949524 0.313696i \(-0.898433\pi\)
−0.00492362 0.999988i \(-0.501567\pi\)
\(104\) 0 0
\(105\) −8.45298 + 3.91417i −0.824926 + 0.381984i
\(106\) 0 0
\(107\) 14.9910i 1.44923i 0.689153 + 0.724616i \(0.257983\pi\)
−0.689153 + 0.724616i \(0.742017\pi\)
\(108\) 0 0
\(109\) −3.03784 + 9.34952i −0.290972 + 0.895521i 0.693572 + 0.720387i \(0.256036\pi\)
−0.984545 + 0.175134i \(0.943964\pi\)
\(110\) 0 0
\(111\) 7.05739 + 21.7204i 0.669858 + 2.06161i
\(112\) 0 0
\(113\) −15.9570 5.18475i −1.50111 0.487740i −0.560769 0.827973i \(-0.689494\pi\)
−0.940341 + 0.340232i \(0.889494\pi\)
\(114\) 0 0
\(115\) 2.11301 0.253704i 0.197039 0.0236581i
\(116\) 0 0
\(117\) 5.68652 7.82683i 0.525719 0.723591i
\(118\) 0 0
\(119\) 9.62521 + 6.99313i 0.882342 + 0.641059i
\(120\) 0 0
\(121\) 4.96618 3.60814i 0.451471 0.328013i
\(122\) 0 0
\(123\) −12.6204 + 4.10063i −1.13795 + 0.369741i
\(124\) 0 0
\(125\) 9.32742 + 6.16436i 0.834270 + 0.551357i
\(126\) 0 0
\(127\) 3.78159 1.22871i 0.335562 0.109031i −0.136389 0.990655i \(-0.543550\pi\)
0.471951 + 0.881625i \(0.343550\pi\)
\(128\) 0 0
\(129\) −7.18342 + 5.21906i −0.632465 + 0.459513i
\(130\) 0 0
\(131\) −8.60768 6.25385i −0.752057 0.546401i 0.144407 0.989518i \(-0.453873\pi\)
−0.896464 + 0.443117i \(0.853873\pi\)
\(132\) 0 0
\(133\) 4.06570 5.59596i 0.352541 0.485231i
\(134\) 0 0
\(135\) 4.86900 0.584612i 0.419057 0.0503154i
\(136\) 0 0
\(137\) −10.7203 3.48323i −0.915896 0.297593i −0.187114 0.982338i \(-0.559913\pi\)
−0.728782 + 0.684745i \(0.759913\pi\)
\(138\) 0 0
\(139\) 1.12959 + 3.47652i 0.0958105 + 0.294874i 0.987464 0.157844i \(-0.0504543\pi\)
−0.891654 + 0.452718i \(0.850454\pi\)
\(140\) 0 0
\(141\) 6.98640 21.5019i 0.588361 1.81079i
\(142\) 0 0
\(143\) 10.5532i 0.882502i
\(144\) 0 0
\(145\) −11.8210 + 5.47375i −0.981681 + 0.454570i
\(146\) 0 0
\(147\) 4.66758 + 6.42438i 0.384976 + 0.529874i
\(148\) 0 0
\(149\) −8.64836 −0.708501 −0.354250 0.935151i \(-0.615264\pi\)
−0.354250 + 0.935151i \(0.615264\pi\)
\(150\) 0 0
\(151\) −6.30755 −0.513301 −0.256650 0.966504i \(-0.582619\pi\)
−0.256650 + 0.966504i \(0.582619\pi\)
\(152\) 0 0
\(153\) 7.60323 + 10.4649i 0.614685 + 0.846041i
\(154\) 0 0
\(155\) −10.2021 10.9994i −0.819456 0.883489i
\(156\) 0 0
\(157\) 11.9460i 0.953395i 0.879067 + 0.476698i \(0.158166\pi\)
−0.879067 + 0.476698i \(0.841834\pi\)
\(158\) 0 0
\(159\) 2.90699 8.94679i 0.230539 0.709527i
\(160\) 0 0
\(161\) 0.546773 + 1.68279i 0.0430918 + 0.132623i
\(162\) 0 0
\(163\) 16.4856 + 5.35650i 1.29125 + 0.419553i 0.872530 0.488561i \(-0.162478\pi\)
0.418723 + 0.908114i \(0.362478\pi\)
\(164\) 0 0
\(165\) −8.10000 + 7.51293i −0.630584 + 0.584881i
\(166\) 0 0
\(167\) 4.09258 5.63295i 0.316693 0.435891i −0.620761 0.784000i \(-0.713176\pi\)
0.937454 + 0.348109i \(0.113176\pi\)
\(168\) 0 0
\(169\) 8.01632 + 5.82419i 0.616640 + 0.448015i
\(170\) 0 0
\(171\) 6.08417 4.42041i 0.465268 0.338037i
\(172\) 0 0
\(173\) −1.36718 + 0.444224i −0.103945 + 0.0337737i −0.360528 0.932749i \(-0.617403\pi\)
0.256583 + 0.966522i \(0.417403\pi\)
\(174\) 0 0
\(175\) −3.52824 + 8.59984i −0.266710 + 0.650087i
\(176\) 0 0
\(177\) −12.8603 + 4.17855i −0.966636 + 0.314079i
\(178\) 0 0
\(179\) −14.6030 + 10.6097i −1.09148 + 0.793006i −0.979648 0.200722i \(-0.935671\pi\)
−0.111830 + 0.993727i \(0.535671\pi\)
\(180\) 0 0
\(181\) 16.1239 + 11.7147i 1.19848 + 0.870745i 0.994134 0.108154i \(-0.0344941\pi\)
0.204343 + 0.978899i \(0.434494\pi\)
\(182\) 0 0
\(183\) 4.84411 6.66735i 0.358087 0.492864i
\(184\) 0 0
\(185\) 19.9027 + 11.1020i 1.46328 + 0.816236i
\(186\) 0 0
\(187\) 13.4197 + 4.36031i 0.981343 + 0.318858i
\(188\) 0 0
\(189\) 1.25993 + 3.87767i 0.0916465 + 0.282059i
\(190\) 0 0
\(191\) −5.97693 + 18.3951i −0.432476 + 1.33102i 0.463176 + 0.886266i \(0.346710\pi\)
−0.895652 + 0.444756i \(0.853290\pi\)
\(192\) 0 0
\(193\) 1.51392i 0.108974i −0.998514 0.0544872i \(-0.982648\pi\)
0.998514 0.0544872i \(-0.0173524\pi\)
\(194\) 0 0
\(195\) −2.85899 23.8114i −0.204736 1.70517i
\(196\) 0 0
\(197\) 4.41595 + 6.07803i 0.314623 + 0.433042i 0.936816 0.349822i \(-0.113758\pi\)
−0.622193 + 0.782864i \(0.713758\pi\)
\(198\) 0 0
\(199\) 21.1916 1.50223 0.751117 0.660169i \(-0.229515\pi\)
0.751117 + 0.660169i \(0.229515\pi\)
\(200\) 0 0
\(201\) 32.2345 2.27365
\(202\) 0 0
\(203\) −6.36610 8.76218i −0.446812 0.614985i
\(204\) 0 0
\(205\) −6.45072 + 11.5643i −0.450538 + 0.807684i
\(206\) 0 0
\(207\) 1.92376i 0.133711i
\(208\) 0 0
\(209\) 2.53502 7.80199i 0.175351 0.539675i
\(210\) 0 0
\(211\) 1.83425 + 5.64523i 0.126275 + 0.388634i 0.994131 0.108181i \(-0.0345027\pi\)
−0.867856 + 0.496815i \(0.834503\pi\)
\(212\) 0 0
\(213\) 20.6137 + 6.69779i 1.41243 + 0.458925i
\(214\) 0 0
\(215\) −1.71391 + 8.69301i −0.116888 + 0.592859i
\(216\) 0 0
\(217\) 7.33151 10.0910i 0.497695 0.685019i
\(218\) 0 0
\(219\) 6.55142 + 4.75988i 0.442704 + 0.321643i
\(220\) 0 0
\(221\) −24.7805 + 18.0041i −1.66691 + 1.21108i
\(222\) 0 0
\(223\) 1.31652 0.427764i 0.0881609 0.0286452i −0.264604 0.964357i \(-0.585241\pi\)
0.352765 + 0.935712i \(0.385241\pi\)
\(224\) 0 0
\(225\) −6.53765 + 7.70708i −0.435843 + 0.513806i
\(226\) 0 0
\(227\) −9.45162 + 3.07102i −0.627326 + 0.203831i −0.605390 0.795929i \(-0.706983\pi\)
−0.0219357 + 0.999759i \(0.506983\pi\)
\(228\) 0 0
\(229\) −11.6668 + 8.47640i −0.770962 + 0.560136i −0.902253 0.431207i \(-0.858088\pi\)
0.131291 + 0.991344i \(0.458088\pi\)
\(230\) 0 0
\(231\) −7.43104 5.39897i −0.488927 0.355226i
\(232\) 0 0
\(233\) −7.85246 + 10.8080i −0.514431 + 0.708054i −0.984659 0.174491i \(-0.944172\pi\)
0.470227 + 0.882545i \(0.344172\pi\)
\(234\) 0 0
\(235\) −9.47971 20.4722i −0.618388 1.33546i
\(236\) 0 0
\(237\) −24.0520 7.81495i −1.56234 0.507636i
\(238\) 0 0
\(239\) 4.26572 + 13.1285i 0.275926 + 0.849213i 0.988973 + 0.148097i \(0.0473148\pi\)
−0.713047 + 0.701117i \(0.752685\pi\)
\(240\) 0 0
\(241\) 4.40966 13.5715i 0.284051 0.874219i −0.702631 0.711555i \(-0.747991\pi\)
0.986682 0.162664i \(-0.0520087\pi\)
\(242\) 0 0
\(243\) 18.0210i 1.15605i
\(244\) 0 0
\(245\) 7.77445 + 1.53281i 0.496692 + 0.0979277i
\(246\) 0 0
\(247\) 10.4673 + 14.4070i 0.666018 + 0.916695i
\(248\) 0 0
\(249\) 15.5730 0.986902
\(250\) 0 0
\(251\) −0.758323 −0.0478649 −0.0239325 0.999714i \(-0.507619\pi\)
−0.0239325 + 0.999714i \(0.507619\pi\)
\(252\) 0 0
\(253\) 1.23346 + 1.69772i 0.0775471 + 0.106734i
\(254\) 0 0
\(255\) 31.4603 + 6.20271i 1.97012 + 0.388429i
\(256\) 0 0
\(257\) 15.3091i 0.954957i 0.878643 + 0.477478i \(0.158449\pi\)
−0.878643 + 0.477478i \(0.841551\pi\)
\(258\) 0 0
\(259\) −5.85515 + 18.0203i −0.363821 + 1.11973i
\(260\) 0 0
\(261\) −3.63885 11.1992i −0.225239 0.693214i
\(262\) 0 0
\(263\) −12.8524 4.17599i −0.792511 0.257502i −0.115338 0.993326i \(-0.536795\pi\)
−0.677173 + 0.735824i \(0.736795\pi\)
\(264\) 0 0
\(265\) −3.94443 8.51833i −0.242305 0.523277i
\(266\) 0 0
\(267\) 13.7995 18.9934i 0.844516 1.16238i
\(268\) 0 0
\(269\) −10.2780 7.46742i −0.626662 0.455296i 0.228580 0.973525i \(-0.426592\pi\)
−0.855242 + 0.518229i \(0.826592\pi\)
\(270\) 0 0
\(271\) −7.85337 + 5.70581i −0.477058 + 0.346603i −0.800186 0.599752i \(-0.795266\pi\)
0.323127 + 0.946356i \(0.395266\pi\)
\(272\) 0 0
\(273\) 18.9634 6.16157i 1.14771 0.372915i
\(274\) 0 0
\(275\) −0.827891 + 10.9932i −0.0499237 + 0.662917i
\(276\) 0 0
\(277\) −4.87910 + 1.58532i −0.293157 + 0.0952524i −0.451903 0.892067i \(-0.649255\pi\)
0.158746 + 0.987319i \(0.449255\pi\)
\(278\) 0 0
\(279\) 10.9713 7.97113i 0.656836 0.477219i
\(280\) 0 0
\(281\) −20.1560 14.6442i −1.20241 0.873599i −0.207887 0.978153i \(-0.566659\pi\)
−0.994519 + 0.104554i \(0.966659\pi\)
\(282\) 0 0
\(283\) −8.99734 + 12.3838i −0.534836 + 0.736139i −0.987858 0.155361i \(-0.950346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(284\) 0 0
\(285\) 3.60617 18.2906i 0.213611 1.08344i
\(286\) 0 0
\(287\) −10.4705 3.40208i −0.618055 0.200818i
\(288\) 0 0
\(289\) −7.40239 22.7822i −0.435435 1.34013i
\(290\) 0 0
\(291\) −0.325005 + 1.00026i −0.0190521 + 0.0586365i
\(292\) 0 0
\(293\) 14.5144i 0.847941i 0.905676 + 0.423971i \(0.139364\pi\)
−0.905676 + 0.423971i \(0.860636\pi\)
\(294\) 0 0
\(295\) −6.57329 + 11.7840i −0.382712 + 0.686093i
\(296\) 0 0
\(297\) 2.84227 + 3.91205i 0.164925 + 0.227000i
\(298\) 0 0
\(299\) −4.55537 −0.263444
\(300\) 0 0
\(301\) −7.36661 −0.424604
\(302\) 0 0
\(303\) −1.33750 1.84091i −0.0768371 0.105757i
\(304\) 0 0
\(305\) −0.980375 8.16516i −0.0561361 0.467536i
\(306\) 0 0
\(307\) 24.0722i 1.37387i −0.726717 0.686937i \(-0.758955\pi\)
0.726717 0.686937i \(-0.241045\pi\)
\(308\) 0 0
\(309\) 11.4115 35.1209i 0.649176 1.99796i
\(310\) 0 0
\(311\) 2.30411 + 7.09133i 0.130654 + 0.402113i 0.994889 0.100977i \(-0.0321967\pi\)
−0.864235 + 0.503089i \(0.832197\pi\)
\(312\) 0 0
\(313\) −1.21839 0.395878i −0.0688672 0.0223763i 0.274381 0.961621i \(-0.411527\pi\)
−0.343248 + 0.939245i \(0.611527\pi\)
\(314\) 0 0
\(315\) −7.33815 4.09332i −0.413458 0.230633i
\(316\) 0 0
\(317\) 9.21939 12.6894i 0.517813 0.712708i −0.467400 0.884046i \(-0.654809\pi\)
0.985212 + 0.171338i \(0.0548091\pi\)
\(318\) 0 0
\(319\) −10.3919 7.55015i −0.581834 0.422727i
\(320\) 0 0
\(321\) −27.1766 + 19.7449i −1.51685 + 1.10206i
\(322\) 0 0
\(323\) −22.6451 + 7.35783i −1.26000 + 0.409400i
\(324\) 0 0
\(325\) −18.2500 15.4808i −1.01233 0.858721i
\(326\) 0 0
\(327\) −20.9506 + 6.80726i −1.15857 + 0.376443i
\(328\) 0 0
\(329\) 15.1748 11.0251i 0.836613 0.607835i
\(330\) 0 0
\(331\) −17.9852 13.0670i −0.988557 0.718228i −0.0289521 0.999581i \(-0.509217\pi\)
−0.959605 + 0.281352i \(0.909217\pi\)
\(332\) 0 0
\(333\) −12.1088 + 16.6663i −0.663558 + 0.913309i
\(334\) 0 0
\(335\) 23.5835 21.8742i 1.28850 1.19511i
\(336\) 0 0
\(337\) −1.72123 0.559261i −0.0937613 0.0304649i 0.261761 0.965133i \(-0.415697\pi\)
−0.355522 + 0.934668i \(0.615697\pi\)
\(338\) 0 0
\(339\) −11.6181 35.7568i −0.631009 1.94205i
\(340\) 0 0
\(341\) 4.57130 14.0690i 0.247550 0.761879i
\(342\) 0 0
\(343\) 19.6019i 1.05840i
\(344\) 0 0
\(345\) 3.24302 + 3.49643i 0.174598 + 0.188241i
\(346\) 0 0
\(347\) 12.8352 + 17.6661i 0.689030 + 0.948368i 0.999998 0.00205222i \(-0.000653241\pi\)
−0.310968 + 0.950420i \(0.600653\pi\)
\(348\) 0 0
\(349\) 10.7589 0.575909 0.287955 0.957644i \(-0.407025\pi\)
0.287955 + 0.957644i \(0.407025\pi\)
\(350\) 0 0
\(351\) −10.4970 −0.560286
\(352\) 0 0
\(353\) 15.1356 + 20.8324i 0.805586 + 1.10879i 0.991989 + 0.126321i \(0.0403170\pi\)
−0.186403 + 0.982473i \(0.559683\pi\)
\(354\) 0 0
\(355\) 19.6265 9.08809i 1.04167 0.482346i
\(356\) 0 0
\(357\) 26.6600i 1.41100i
\(358\) 0 0
\(359\) 3.91090 12.0365i 0.206409 0.635263i −0.793243 0.608905i \(-0.791609\pi\)
0.999653 0.0263579i \(-0.00839095\pi\)
\(360\) 0 0
\(361\) −1.59359 4.90457i −0.0838732 0.258135i
\(362\) 0 0
\(363\) 13.0821 + 4.25064i 0.686634 + 0.223101i
\(364\) 0 0
\(365\) 8.02319 0.963329i 0.419953 0.0504229i
\(366\) 0 0
\(367\) 6.61059 9.09869i 0.345070 0.474948i −0.600844 0.799366i \(-0.705169\pi\)
0.945914 + 0.324419i \(0.105169\pi\)
\(368\) 0 0
\(369\) −9.68381 7.03570i −0.504119 0.366264i
\(370\) 0 0
\(371\) 6.31411 4.58747i 0.327812 0.238170i
\(372\) 0 0
\(373\) 7.66947 2.49196i 0.397110 0.129029i −0.103652 0.994614i \(-0.533053\pi\)
0.500763 + 0.865585i \(0.333053\pi\)
\(374\) 0 0
\(375\) 1.11021 + 25.0285i 0.0573311 + 1.29247i
\(376\) 0 0
\(377\) 26.5192 8.61660i 1.36581 0.443778i
\(378\) 0 0
\(379\) 6.51391 4.73263i 0.334597 0.243099i −0.407782 0.913079i \(-0.633698\pi\)
0.742379 + 0.669980i \(0.233698\pi\)
\(380\) 0 0
\(381\) 7.20831 + 5.23714i 0.369293 + 0.268307i
\(382\) 0 0
\(383\) 14.4091 19.8324i 0.736270 1.01339i −0.262555 0.964917i \(-0.584565\pi\)
0.998825 0.0484712i \(-0.0154349\pi\)
\(384\) 0 0
\(385\) −9.10042 + 1.09267i −0.463801 + 0.0556876i
\(386\) 0 0
\(387\) −7.61729 2.47501i −0.387209 0.125812i
\(388\) 0 0
\(389\) −0.720320 2.21692i −0.0365217 0.112402i 0.931134 0.364678i \(-0.118821\pi\)
−0.967655 + 0.252276i \(0.918821\pi\)
\(390\) 0 0
\(391\) 1.88216 5.79271i 0.0951852 0.292950i
\(392\) 0 0
\(393\) 23.8416i 1.20265i
\(394\) 0 0
\(395\) −22.9001 + 10.6040i −1.15223 + 0.533543i
\(396\) 0 0
\(397\) −9.42301 12.9697i −0.472927 0.650929i 0.504199 0.863587i \(-0.331788\pi\)
−0.977127 + 0.212659i \(0.931788\pi\)
\(398\) 0 0
\(399\) 15.4997 0.775957
\(400\) 0 0
\(401\) −19.3238 −0.964984 −0.482492 0.875900i \(-0.660268\pi\)
−0.482492 + 0.875900i \(0.660268\pi\)
\(402\) 0 0
\(403\) 18.8752 + 25.9795i 0.940243 + 1.29413i
\(404\) 0 0
\(405\) 16.6937 + 17.9981i 0.829515 + 0.894334i
\(406\) 0 0
\(407\) 22.4718i 1.11389i
\(408\) 0 0
\(409\) −11.9419 + 36.7534i −0.590490 + 1.81734i −0.0144830 + 0.999895i \(0.504610\pi\)
−0.576007 + 0.817445i \(0.695390\pi\)
\(410\) 0 0
\(411\) −7.80531 24.0223i −0.385008 1.18493i
\(412\) 0 0
\(413\) −10.6695 3.46673i −0.525011 0.170586i
\(414\) 0 0
\(415\) 11.3936 10.5678i 0.559288 0.518752i
\(416\) 0 0
\(417\) −4.81465 + 6.62679i −0.235774 + 0.324515i
\(418\) 0 0
\(419\) −3.88236 2.82070i −0.189666 0.137800i 0.488900 0.872340i \(-0.337398\pi\)
−0.678566 + 0.734540i \(0.737398\pi\)
\(420\) 0 0
\(421\) −26.0151 + 18.9011i −1.26790 + 0.921182i −0.999117 0.0420195i \(-0.986621\pi\)
−0.268781 + 0.963201i \(0.586621\pi\)
\(422\) 0 0
\(423\) 19.3954 6.30193i 0.943035 0.306411i
\(424\) 0 0
\(425\) 27.2262 16.8108i 1.32066 0.815443i
\(426\) 0 0
\(427\) 6.50272 2.11286i 0.314689 0.102249i
\(428\) 0 0
\(429\) 19.1315 13.8998i 0.923678 0.671091i
\(430\) 0 0
\(431\) −1.16017 0.842909i −0.0558832 0.0406015i 0.559493 0.828835i \(-0.310996\pi\)
−0.615376 + 0.788234i \(0.710996\pi\)
\(432\) 0 0
\(433\) 0.854327 1.17588i 0.0410563 0.0565092i −0.787995 0.615681i \(-0.788881\pi\)
0.829052 + 0.559172i \(0.188881\pi\)
\(434\) 0 0
\(435\) −25.4929 14.2203i −1.22229 0.681810i
\(436\) 0 0
\(437\) −3.36779 1.09426i −0.161103 0.0523457i
\(438\) 0 0
\(439\) 2.54098 + 7.82032i 0.121274 + 0.373244i 0.993204 0.116387i \(-0.0371314\pi\)
−0.871930 + 0.489631i \(0.837131\pi\)
\(440\) 0 0
\(441\) −2.21348 + 6.81240i −0.105404 + 0.324400i
\(442\) 0 0
\(443\) 22.7301i 1.07994i −0.841684 0.539971i \(-0.818435\pi\)
0.841684 0.539971i \(-0.181565\pi\)
\(444\) 0 0
\(445\) −2.79281 23.2602i −0.132392 1.10264i
\(446\) 0 0
\(447\) −11.3909 15.6783i −0.538773 0.741558i
\(448\) 0 0
\(449\) −5.30862 −0.250529 −0.125265 0.992123i \(-0.539978\pi\)
−0.125265 + 0.992123i \(0.539978\pi\)
\(450\) 0 0
\(451\) −13.0570 −0.614832
\(452\) 0 0
\(453\) −8.30781 11.4347i −0.390335 0.537250i
\(454\) 0 0
\(455\) 9.69278 17.3764i 0.454405 0.814617i
\(456\) 0 0
\(457\) 25.3646i 1.18651i 0.805016 + 0.593253i \(0.202156\pi\)
−0.805016 + 0.593253i \(0.797844\pi\)
\(458\) 0 0
\(459\) 4.33708 13.3481i 0.202437 0.623038i
\(460\) 0 0
\(461\) 7.82214 + 24.0741i 0.364314 + 1.12124i 0.950410 + 0.311000i \(0.100664\pi\)
−0.586096 + 0.810241i \(0.699336\pi\)
\(462\) 0 0
\(463\) 30.8240 + 10.0153i 1.43251 + 0.465452i 0.919555 0.392962i \(-0.128550\pi\)
0.512958 + 0.858414i \(0.328550\pi\)
\(464\) 0 0
\(465\) 6.50285 32.9826i 0.301562 1.52953i
\(466\) 0 0
\(467\) −13.9120 + 19.1483i −0.643773 + 0.886077i −0.998810 0.0487749i \(-0.984468\pi\)
0.355037 + 0.934852i \(0.384468\pi\)
\(468\) 0 0
\(469\) 21.6358 + 15.7193i 0.999048 + 0.725851i
\(470\) 0 0
\(471\) −21.6565 + 15.7344i −0.997878 + 0.725001i
\(472\) 0 0
\(473\) −8.30914 + 2.69980i −0.382055 + 0.124137i
\(474\) 0 0
\(475\) −9.77354 15.8289i −0.448441 0.726279i
\(476\) 0 0
\(477\) 8.07026 2.62219i 0.369512 0.120062i
\(478\) 0 0
\(479\) 25.7721 18.7245i 1.17756 0.855546i 0.185664 0.982613i \(-0.440556\pi\)
0.991894 + 0.127067i \(0.0405565\pi\)
\(480\) 0 0
\(481\) −39.4650 28.6730i −1.79945 1.30738i
\(482\) 0 0
\(483\) −2.33051 + 3.20767i −0.106042 + 0.145954i
\(484\) 0 0
\(485\) 0.440993 + 0.952360i 0.0200245 + 0.0432445i
\(486\) 0 0
\(487\) −10.7893 3.50567i −0.488912 0.158857i 0.0541786 0.998531i \(-0.482746\pi\)
−0.543091 + 0.839674i \(0.682746\pi\)
\(488\) 0 0
\(489\) 12.0030 + 36.9413i 0.542793 + 1.67054i
\(490\) 0 0
\(491\) 8.29887 25.5413i 0.374523 1.15266i −0.569277 0.822146i \(-0.692777\pi\)
0.943800 0.330517i \(-0.107223\pi\)
\(492\) 0 0
\(493\) 37.2825i 1.67912i
\(494\) 0 0
\(495\) −9.77722 1.92768i −0.439453 0.0866426i
\(496\) 0 0
\(497\) 10.5697 + 14.5479i 0.474114 + 0.652563i
\(498\) 0 0
\(499\) −36.3336 −1.62651 −0.813257 0.581904i \(-0.802308\pi\)
−0.813257 + 0.581904i \(0.802308\pi\)
\(500\) 0 0
\(501\) 15.6022 0.697055
\(502\) 0 0
\(503\) −2.99740 4.12557i −0.133648 0.183950i 0.736948 0.675949i \(-0.236266\pi\)
−0.870596 + 0.491999i \(0.836266\pi\)
\(504\) 0 0
\(505\) −2.22777 0.439227i −0.0991344 0.0195453i
\(506\) 0 0
\(507\) 22.2037i 0.986099i
\(508\) 0 0
\(509\) −4.80173 + 14.7782i −0.212833 + 0.655032i 0.786468 + 0.617631i \(0.211908\pi\)
−0.999300 + 0.0374003i \(0.988092\pi\)
\(510\) 0 0
\(511\) 2.07613 + 6.38966i 0.0918424 + 0.282662i
\(512\) 0 0
\(513\) −7.76042 2.52151i −0.342631 0.111327i
\(514\) 0 0
\(515\) −15.4840 33.4390i −0.682306 1.47350i
\(516\) 0 0
\(517\) 13.0757 17.9972i 0.575070 0.791516i
\(518\) 0 0
\(519\) −2.60606 1.89341i −0.114393 0.0831116i
\(520\) 0 0
\(521\) 7.86009 5.71069i 0.344357 0.250190i −0.402141 0.915578i \(-0.631734\pi\)
0.746498 + 0.665388i \(0.231734\pi\)
\(522\) 0 0
\(523\) −2.08311 + 0.676843i −0.0910880 + 0.0295963i −0.354206 0.935167i \(-0.615249\pi\)
0.263118 + 0.964764i \(0.415249\pi\)
\(524\) 0 0
\(525\) −20.2375 + 4.93083i −0.883235 + 0.215199i
\(526\) 0 0
\(527\) −40.8349 + 13.2681i −1.77880 + 0.577966i
\(528\) 0 0
\(529\) −17.8746 + 12.9866i −0.777155 + 0.564636i
\(530\) 0 0
\(531\) −9.86783 7.16940i −0.428227 0.311125i
\(532\) 0 0
\(533\) 16.6602 22.9308i 0.721633 0.993242i
\(534\) 0 0
\(535\) −6.48414 + 32.8877i −0.280334 + 1.42186i
\(536\) 0 0
\(537\) −38.4679 12.4990i −1.66001 0.539370i
\(538\) 0 0
\(539\) 2.41453 + 7.43115i 0.104001 + 0.320082i
\(540\) 0 0
\(541\) 13.5299 41.6406i 0.581694 1.79027i −0.0304661 0.999536i \(-0.509699\pi\)
0.612160 0.790734i \(-0.290301\pi\)
\(542\) 0 0
\(543\) 44.6600i 1.91655i
\(544\) 0 0
\(545\) −10.7085 + 19.1973i −0.458703 + 0.822323i
\(546\) 0 0
\(547\) 16.5184 + 22.7356i 0.706275 + 0.972104i 0.999869 + 0.0161740i \(0.00514857\pi\)
−0.293594 + 0.955930i \(0.594851\pi\)
\(548\) 0 0
\(549\) 7.43388 0.317270
\(550\) 0 0
\(551\) 21.6755 0.923407
\(552\) 0 0
\(553\) −12.3326 16.9744i −0.524438 0.721826i
\(554\) 0 0
\(555\) 6.08788 + 50.7036i 0.258416 + 2.15225i
\(556\) 0 0
\(557\) 24.1061i 1.02141i −0.859757 0.510703i \(-0.829385\pi\)
0.859757 0.510703i \(-0.170615\pi\)
\(558\) 0 0
\(559\) 5.86069 18.0374i 0.247881 0.762899i
\(560\) 0 0
\(561\) 9.77068 + 30.0711i 0.412519 + 1.26960i
\(562\) 0 0
\(563\) 27.4814 + 8.92924i 1.15820 + 0.376323i 0.824227 0.566259i \(-0.191610\pi\)
0.333975 + 0.942582i \(0.391610\pi\)
\(564\) 0 0
\(565\) −32.7645 18.2765i −1.37841 0.768897i
\(566\) 0 0
\(567\) −11.9965 + 16.5117i −0.503804 + 0.693427i
\(568\) 0 0
\(569\) 0.0640223 + 0.0465149i 0.00268395 + 0.00195001i 0.589126 0.808041i \(-0.299472\pi\)
−0.586442 + 0.809991i \(0.699472\pi\)
\(570\) 0 0
\(571\) 22.3019 16.2033i 0.933307 0.678088i −0.0134930 0.999909i \(-0.504295\pi\)
0.946800 + 0.321821i \(0.104295\pi\)
\(572\) 0 0
\(573\) −41.2202 + 13.3932i −1.72200 + 0.559511i
\(574\) 0 0
\(575\) 4.74532 + 0.357366i 0.197894 + 0.0149032i
\(576\) 0 0
\(577\) 13.8267 4.49258i 0.575615 0.187029i −0.00672030 0.999977i \(-0.502139\pi\)
0.582335 + 0.812949i \(0.302139\pi\)
\(578\) 0 0
\(579\) 2.74453 1.99402i 0.114059 0.0828686i
\(580\) 0 0
\(581\) 10.4526 + 7.59427i 0.433647 + 0.315063i
\(582\) 0 0
\(583\) 5.44071 7.48850i 0.225331 0.310142i
\(584\) 0 0
\(585\) 15.8607 14.7111i 0.655759 0.608231i
\(586\) 0 0
\(587\) −20.0294 6.50795i −0.826702 0.268612i −0.135046 0.990839i \(-0.543118\pi\)
−0.691656 + 0.722227i \(0.743118\pi\)
\(588\) 0 0
\(589\) 7.71385 + 23.7408i 0.317844 + 0.978223i
\(590\) 0 0
\(591\) −5.20230 + 16.0110i −0.213994 + 0.658605i
\(592\) 0 0
\(593\) 19.9763i 0.820328i −0.912012 0.410164i \(-0.865471\pi\)
0.912012 0.410164i \(-0.134529\pi\)
\(594\) 0 0
\(595\) 18.0913 + 19.5050i 0.741673 + 0.799628i
\(596\) 0 0
\(597\) 27.9120 + 38.4175i 1.14236 + 1.57232i
\(598\) 0 0
\(599\) 33.0408 1.35001 0.675005 0.737813i \(-0.264141\pi\)
0.675005 + 0.737813i \(0.264141\pi\)
\(600\) 0 0
\(601\) 6.72970 0.274510 0.137255 0.990536i \(-0.456172\pi\)
0.137255 + 0.990536i \(0.456172\pi\)
\(602\) 0 0
\(603\) 17.0907 + 23.5234i 0.695988 + 0.957945i
\(604\) 0 0
\(605\) 12.4556 5.76761i 0.506393 0.234487i
\(606\) 0 0
\(607\) 4.56961i 0.185475i −0.995691 0.0927374i \(-0.970438\pi\)
0.995691 0.0927374i \(-0.0295617\pi\)
\(608\) 0 0
\(609\) 7.49971 23.0817i 0.303904 0.935319i
\(610\) 0 0
\(611\) 14.9227 + 45.9272i 0.603706 + 1.85802i
\(612\) 0 0
\(613\) 21.3226 + 6.92814i 0.861213 + 0.279825i 0.706135 0.708077i \(-0.250437\pi\)
0.155078 + 0.987902i \(0.450437\pi\)
\(614\) 0 0
\(615\) −29.4608 + 3.53731i −1.18798 + 0.142638i
\(616\) 0 0
\(617\) −5.49011 + 7.55649i −0.221023 + 0.304213i −0.905101 0.425197i \(-0.860205\pi\)
0.684078 + 0.729409i \(0.260205\pi\)
\(618\) 0 0
\(619\) 12.9673 + 9.42126i 0.521198 + 0.378673i 0.817055 0.576560i \(-0.195605\pi\)
−0.295857 + 0.955232i \(0.595605\pi\)
\(620\) 0 0
\(621\) 1.68867 1.22689i 0.0677639 0.0492334i
\(622\) 0 0
\(623\) 18.5244 6.01895i 0.742166 0.241144i
\(624\) 0 0
\(625\) 17.7965 + 17.5580i 0.711860 + 0.702321i
\(626\) 0 0
\(627\) 17.4829 5.68053i 0.698199 0.226859i
\(628\) 0 0
\(629\) 52.7672 38.3376i 2.10396 1.52862i
\(630\) 0 0
\(631\) 0.205708 + 0.149456i 0.00818912 + 0.00594975i 0.591872 0.806032i \(-0.298389\pi\)
−0.583683 + 0.811982i \(0.698389\pi\)
\(632\) 0 0
\(633\) −7.81811 + 10.7607i −0.310742 + 0.427699i
\(634\) 0 0
\(635\) 8.82765 1.05992i 0.350314 0.0420616i
\(636\) 0 0
\(637\) −16.1314 5.24141i −0.639150 0.207672i
\(638\) 0 0
\(639\) 6.04160 + 18.5941i 0.239002 + 0.735572i
\(640\) 0 0
\(641\) −14.0339 + 43.1918i −0.554305 + 1.70598i 0.143467 + 0.989655i \(0.454175\pi\)
−0.697772 + 0.716320i \(0.745825\pi\)
\(642\) 0 0
\(643\) 7.01215i 0.276532i −0.990395 0.138266i \(-0.955847\pi\)
0.990395 0.138266i \(-0.0441529\pi\)
\(644\) 0 0
\(645\) −18.0167 + 8.34267i −0.709406 + 0.328492i
\(646\) 0 0
\(647\) 7.34966 + 10.1159i 0.288945 + 0.397698i 0.928671 0.370904i \(-0.120952\pi\)
−0.639726 + 0.768603i \(0.720952\pi\)
\(648\) 0 0
\(649\) −13.3051 −0.522273
\(650\) 0 0
\(651\) 27.9500 1.09545
\(652\) 0 0
\(653\) 11.0961 + 15.2725i 0.434224 + 0.597658i 0.968916 0.247389i \(-0.0795725\pi\)
−0.534692 + 0.845047i \(0.679572\pi\)
\(654\) 0 0
\(655\) −16.1788 17.4430i −0.632159 0.681556i
\(656\) 0 0
\(657\) 7.30463i 0.284981i
\(658\) 0 0
\(659\) −7.82961 + 24.0971i −0.304998 + 0.938689i 0.674679 + 0.738111i \(0.264282\pi\)
−0.979678 + 0.200578i \(0.935718\pi\)
\(660\) 0 0
\(661\) 2.51468 + 7.73937i 0.0978095 + 0.301027i 0.987976 0.154609i \(-0.0494119\pi\)
−0.890166 + 0.455636i \(0.849412\pi\)
\(662\) 0 0
\(663\) −65.2778 21.2101i −2.53518 0.823730i
\(664\) 0 0
\(665\) 11.3399 10.5180i 0.439744 0.407872i
\(666\) 0 0
\(667\) −3.25909 + 4.48575i −0.126192 + 0.173689i
\(668\) 0 0
\(669\) 2.50950 + 1.82326i 0.0970229 + 0.0704912i
\(670\) 0 0
\(671\) 6.56038 4.76640i 0.253261 0.184005i
\(672\) 0 0
\(673\) 41.5233 13.4917i 1.60061 0.520069i 0.633349 0.773866i \(-0.281680\pi\)
0.967257 + 0.253798i \(0.0816797\pi\)
\(674\) 0 0
\(675\) 10.9347 + 0.823479i 0.420875 + 0.0316957i
\(676\) 0 0
\(677\) −23.5415 + 7.64908i −0.904772 + 0.293978i −0.724205 0.689585i \(-0.757793\pi\)
−0.180567 + 0.983563i \(0.557793\pi\)
\(678\) 0 0
\(679\) −0.705926 + 0.512885i −0.0270910 + 0.0196827i
\(680\) 0 0
\(681\) −18.0163 13.0896i −0.690385 0.501594i
\(682\) 0 0
\(683\) −11.0504 + 15.2095i −0.422830 + 0.581976i −0.966289 0.257460i \(-0.917114\pi\)
0.543459 + 0.839436i \(0.317114\pi\)
\(684\) 0 0
\(685\) −22.0119 12.2786i −0.841032 0.469140i
\(686\) 0 0
\(687\) −30.7331 9.98580i −1.17254 0.380982i
\(688\) 0 0
\(689\) 6.20921 + 19.1100i 0.236552 + 0.728032i
\(690\) 0 0
\(691\) 9.31610 28.6720i 0.354401 1.09073i −0.601955 0.798530i \(-0.705611\pi\)
0.956356 0.292204i \(-0.0943887\pi\)
\(692\) 0 0
\(693\) 8.28538i 0.314736i
\(694\) 0 0
\(695\) 0.974412 + 8.11549i 0.0369615 + 0.307838i
\(696\) 0 0
\(697\) 22.2757 + 30.6599i 0.843752 + 1.16132i
\(698\) 0 0
\(699\) −29.9360 −1.13228
\(700\) 0 0
\(701\) −5.93443 −0.224140 −0.112070 0.993700i \(-0.535748\pi\)
−0.112070 + 0.993700i \(0.535748\pi\)
\(702\) 0 0
\(703\) −22.2889 30.6781i −0.840642 1.15704i
\(704\) 0 0
\(705\) 24.6274 44.1498i 0.927521 1.66278i
\(706\) 0 0
\(707\) 1.88785i 0.0709999i
\(708\) 0 0
\(709\) −2.05638 + 6.32887i −0.0772288 + 0.237686i −0.982216 0.187752i \(-0.939880\pi\)
0.904988 + 0.425438i \(0.139880\pi\)
\(710\) 0 0
\(711\) −7.04931 21.6956i −0.264370 0.813647i
\(712\) 0 0
\(713\) −6.07300 1.97324i −0.227436 0.0738983i
\(714\) 0 0
\(715\) 4.56464 23.1520i 0.170708 0.865834i
\(716\) 0 0
\(717\) −18.1818 + 25.0250i −0.679010 + 0.934577i
\(718\) 0 0
\(719\) −15.0272 10.9179i −0.560420 0.407169i 0.271192 0.962525i \(-0.412582\pi\)
−0.831613 + 0.555356i \(0.812582\pi\)
\(720\) 0 0
\(721\) 24.7862 18.0083i 0.923088 0.670662i
\(722\) 0 0
\(723\) 30.4114 9.88126i 1.13101 0.367488i
\(724\) 0 0
\(725\) −28.3009 + 6.89548i −1.05107 + 0.256092i
\(726\) 0 0
\(727\) 35.3130 11.4739i 1.30969 0.425543i 0.430746 0.902473i \(-0.358250\pi\)
0.878942 + 0.476930i \(0.158250\pi\)
\(728\) 0 0
\(729\) −6.02475 + 4.37724i −0.223139 + 0.162120i
\(730\) 0 0
\(731\) 20.5152 + 14.9052i 0.758782 + 0.551287i
\(732\) 0 0
\(733\) 14.6472 20.1602i 0.541008 0.744634i −0.447750 0.894159i \(-0.647774\pi\)
0.988758 + 0.149525i \(0.0477744\pi\)
\(734\) 0 0
\(735\) 7.46113 + 16.1129i 0.275208 + 0.594334i
\(736\) 0 0
\(737\) 30.1650 + 9.80121i 1.11114 + 0.361032i
\(738\) 0 0
\(739\) 12.3983 + 38.1581i 0.456080 + 1.40367i 0.869862 + 0.493294i \(0.164207\pi\)
−0.413782 + 0.910376i \(0.635793\pi\)
\(740\) 0 0
\(741\) −12.3312 + 37.9516i −0.452998 + 1.39419i
\(742\) 0 0
\(743\) 31.3057i 1.14850i −0.818681 0.574248i \(-0.805295\pi\)
0.818681 0.574248i \(-0.194705\pi\)
\(744\) 0 0
\(745\) −18.9731 3.74073i −0.695119 0.137050i
\(746\) 0 0
\(747\) 8.25681 + 11.3645i 0.302101 + 0.415806i
\(748\) 0 0
\(749\) −27.8696 −1.01833
\(750\) 0 0
\(751\) 8.67841 0.316680 0.158340 0.987385i \(-0.449386\pi\)
0.158340 + 0.987385i \(0.449386\pi\)
\(752\) 0 0
\(753\) −0.998805 1.37474i −0.0363985 0.0500982i
\(754\) 0 0
\(755\) −13.8377 2.72824i −0.503606 0.0992909i
\(756\) 0 0
\(757\) 27.9929i 1.01742i −0.860938 0.508709i \(-0.830123\pi\)
0.860938 0.508709i \(-0.169877\pi\)
\(758\) 0 0
\(759\) −1.45311 + 4.47220i −0.0527444 + 0.162331i
\(760\) 0 0
\(761\) −7.51220 23.1202i −0.272317 0.838106i −0.989917 0.141650i \(-0.954759\pi\)
0.717600 0.696456i \(-0.245241\pi\)
\(762\) 0 0
\(763\) −17.3816 5.64763i −0.629257 0.204458i
\(764\) 0 0
\(765\) 12.1538 + 26.2470i 0.439420 + 0.948964i
\(766\) 0 0
\(767\) 16.9768 23.3665i 0.612996 0.843716i
\(768\) 0 0
\(769\) 4.52205 + 3.28546i 0.163069 + 0.118477i 0.666327 0.745660i \(-0.267865\pi\)
−0.503258 + 0.864136i \(0.667865\pi\)
\(770\) 0 0
\(771\) −27.7534 + 20.1640i −0.999513 + 0.726188i
\(772\) 0 0
\(773\) −3.24785 + 1.05529i −0.116817 + 0.0379562i −0.366842 0.930283i \(-0.619561\pi\)
0.250025 + 0.968239i \(0.419561\pi\)
\(774\) 0 0
\(775\) −17.6242 28.5436i −0.633080 1.02532i
\(776\) 0 0
\(777\) −40.3803 + 13.1204i −1.44864 + 0.470690i
\(778\) 0 0
\(779\) 17.8252 12.9508i 0.638654 0.464009i
\(780\) 0 0
\(781\) 17.2537 + 12.5356i 0.617387 + 0.448558i
\(782\) 0 0
\(783\) −7.50992 + 10.3365i −0.268383 + 0.369397i
\(784\) 0 0
\(785\) −5.16708 + 26.2076i −0.184421 + 0.935388i
\(786\) 0 0
\(787\) −45.8378 14.8936i −1.63394 0.530899i −0.658768 0.752346i \(-0.728922\pi\)
−0.975172 + 0.221447i \(0.928922\pi\)
\(788\) 0 0
\(789\) −9.35764 28.7999i −0.333141 1.02530i
\(790\) 0 0
\(791\) 9.63893 29.6656i 0.342721 1.05479i
\(792\) 0 0
\(793\) 17.6031i 0.625103i
\(794\) 0 0
\(795\) 10.2473 18.3704i 0.363433 0.651531i
\(796\) 0 0
\(797\) −6.10087 8.39713i −0.216104 0.297442i 0.687178 0.726489i \(-0.258849\pi\)
−0.903282 + 0.429048i \(0.858849\pi\)
\(798\) 0 0
\(799\) −64.5677 −2.28424
\(800\) 0 0
\(801\) 21.1770 0.748254
\(802\) 0 0
\(803\) 4.68352 + 6.44631i 0.165278 + 0.227485i
\(804\) 0 0
\(805\) 0.471660 + 3.92827i 0.0166238 + 0.138453i
\(806\) 0 0
\(807\) 28.4681i 1.00213i
\(808\) 0 0
\(809\) 4.30668 13.2546i 0.151415 0.466007i −0.846365 0.532603i \(-0.821214\pi\)
0.997780 + 0.0665959i \(0.0212138\pi\)
\(810\) 0 0
\(811\) −3.49190 10.7470i −0.122617 0.377377i 0.870842 0.491563i \(-0.163574\pi\)
−0.993459 + 0.114186i \(0.963574\pi\)
\(812\) 0 0
\(813\) −20.6877 6.72184i −0.725550 0.235745i
\(814\) 0 0
\(815\) 33.8498 + 18.8819i 1.18571 + 0.661404i
\(816\) 0 0
\(817\) 8.66564 11.9272i 0.303172 0.417281i
\(818\) 0 0
\(819\) 14.5508 + 10.5718i 0.508446 + 0.369408i
\(820\) 0 0
\(821\) 19.6322 14.2636i 0.685169 0.497805i −0.189899 0.981804i \(-0.560816\pi\)
0.875069 + 0.483999i \(0.160816\pi\)
\(822\) 0 0
\(823\) 1.00113 0.325286i 0.0348971 0.0113387i −0.291516 0.956566i \(-0.594160\pi\)
0.326414 + 0.945227i \(0.394160\pi\)
\(824\) 0 0
\(825\) −21.0197 + 12.9786i −0.731811 + 0.451856i
\(826\) 0 0
\(827\) 30.3729 9.86874i 1.05617 0.343170i 0.271082 0.962556i \(-0.412619\pi\)
0.785086 + 0.619387i \(0.212619\pi\)
\(828\) 0 0
\(829\) −23.5676 + 17.1229i −0.818536 + 0.594701i −0.916293 0.400509i \(-0.868833\pi\)
0.0977566 + 0.995210i \(0.468833\pi\)
\(830\) 0 0
\(831\) −9.30034 6.75709i −0.322625 0.234401i
\(832\) 0 0
\(833\) 13.3302 18.3474i 0.461863 0.635700i
\(834\) 0 0
\(835\) 11.4149 10.5876i 0.395029 0.366398i
\(836\) 0 0
\(837\) −13.9940 4.54694i −0.483705 0.157165i
\(838\) 0 0
\(839\) 3.70912 + 11.4155i 0.128053 + 0.394107i 0.994445 0.105258i \(-0.0335667\pi\)
−0.866392 + 0.499365i \(0.833567\pi\)
\(840\) 0 0
\(841\) 1.52643 4.69786i 0.0526354 0.161995i
\(842\) 0 0
\(843\) 55.8283i 1.92283i
\(844\) 0 0
\(845\) 15.0673 + 16.2447i 0.518331 + 0.558834i
\(846\) 0 0
\(847\) 6.70787 + 9.23259i 0.230485 + 0.317236i
\(848\) 0 0
\(849\) −34.3007 −1.17720
\(850\) 0 0
\(851\) 9.70015 0.332517
\(852\) 0 0
\(853\) −4.02243 5.53640i −0.137725 0.189563i 0.734583 0.678519i \(-0.237378\pi\)
−0.872308 + 0.488956i \(0.837378\pi\)
\(854\) 0 0
\(855\) 15.2596 7.06602i 0.521869 0.241653i
\(856\) 0 0
\(857\) 51.2474i 1.75058i −0.483601 0.875289i \(-0.660671\pi\)
0.483601 0.875289i \(-0.339329\pi\)
\(858\) 0 0
\(859\) 4.14366 12.7529i 0.141380 0.435123i −0.855148 0.518384i \(-0.826534\pi\)
0.996528 + 0.0832616i \(0.0265337\pi\)
\(860\) 0 0
\(861\) −7.62346 23.4626i −0.259807 0.799603i
\(862\) 0 0
\(863\) −12.3753 4.02097i −0.421260 0.136876i 0.0907135 0.995877i \(-0.471085\pi\)
−0.511973 + 0.859001i \(0.671085\pi\)
\(864\) 0 0
\(865\) −3.19151 + 0.383198i −0.108515 + 0.0130291i
\(866\) 0 0
\(867\) 31.5512 43.4265i 1.07153 1.47484i
\(868\) 0 0
\(869\) −20.1316 14.6264i −0.682917 0.496168i
\(870\) 0 0
\(871\) −55.7021 + 40.4700i −1.88739 + 1.37127i
\(872\) 0 0
\(873\) −0.902266 + 0.293164i −0.0305371 + 0.00992210i
\(874\) 0 0
\(875\) −11.4601 + 17.3405i −0.387423 + 0.586217i
\(876\) 0 0
\(877\) 19.0208 6.18024i 0.642288 0.208692i 0.0302772 0.999542i \(-0.490361\pi\)
0.612011 + 0.790850i \(0.290361\pi\)
\(878\) 0 0
\(879\) −26.3127 + 19.1173i −0.887504 + 0.644809i
\(880\) 0 0
\(881\) −15.3624 11.1614i −0.517572 0.376038i 0.298116 0.954530i \(-0.403642\pi\)
−0.815689 + 0.578491i \(0.803642\pi\)
\(882\) 0 0
\(883\) −16.1290 + 22.1997i −0.542784 + 0.747078i −0.989011 0.147842i \(-0.952767\pi\)
0.446227 + 0.894920i \(0.352767\pi\)
\(884\) 0 0
\(885\) −30.0207 + 3.60452i −1.00913 + 0.121165i
\(886\) 0 0
\(887\) 0.524691 + 0.170483i 0.0176174 + 0.00572424i 0.317812 0.948154i \(-0.397052\pi\)
−0.300195 + 0.953878i \(0.597052\pi\)
\(888\) 0 0
\(889\) 2.28429 + 7.03033i 0.0766127 + 0.235790i
\(890\) 0 0
\(891\) −7.47996 + 23.0210i −0.250588 + 0.771231i
\(892\) 0 0
\(893\) 37.5387i 1.25618i
\(894\) 0 0
\(895\) −36.6256 + 16.9596i −1.22426 + 0.566897i
\(896\) 0 0
\(897\) −5.99999 8.25827i −0.200334 0.275736i
\(898\) 0 0
\(899\) 39.0865 1.30361
\(900\) 0 0
\(901\) −26.8661 −0.895040
\(902\) 0 0
\(903\) −9.70272 13.3547i −0.322886 0.444415i
\(904\) 0 0
\(905\) 30.3061 + 32.6742i 1.00741 + 1.08613i
\(906\) 0 0
\(907\) 25.7362i 0.854556i 0.904120 + 0.427278i \(0.140527\pi\)
−0.904120 + 0.427278i \(0.859473\pi\)
\(908\) 0 0
\(909\) 0.634273 1.95209i 0.0210375 0.0647468i
\(910\) 0 0
\(911\) −2.28613 7.03599i −0.0757429 0.233113i 0.906016 0.423244i \(-0.139109\pi\)
−0.981759 + 0.190131i \(0.939109\pi\)
\(912\) 0 0
\(913\) 14.5732 + 4.73513i 0.482304 + 0.156710i
\(914\) 0 0
\(915\) 13.5110 12.5318i 0.446661 0.414289i
\(916\) 0 0
\(917\) 11.6265 16.0025i 0.383940 0.528449i
\(918\) 0 0
\(919\) −44.0259 31.9867i −1.45228 1.05514i −0.985292 0.170880i \(-0.945339\pi\)
−0.466989 0.884263i \(-0.654661\pi\)
\(920\) 0 0
\(921\) 43.6397 31.7061i 1.43798 1.04475i
\(922\) 0 0
\(923\) −44.0300 + 14.3062i −1.44926 + 0.470894i
\(924\) 0 0
\(925\) 38.8613 + 32.9646i 1.27775 + 1.08387i
\(926\) 0 0
\(927\) 31.6801 10.2935i 1.04051 0.338082i
\(928\) 0 0
\(929\) 26.2460 19.0689i 0.861105 0.625629i −0.0670805 0.997748i \(-0.521368\pi\)
0.928185 + 0.372118i \(0.121368\pi\)
\(930\) 0 0
\(931\) −10.6669 7.74997i −0.349594 0.253995i
\(932\) 0 0
\(933\) −9.82082 + 13.5172i −0.321519 + 0.442533i
\(934\) 0 0
\(935\) 27.5545 + 15.3703i 0.901129 + 0.502662i
\(936\) 0 0
\(937\) 0.0671382 + 0.0218145i 0.00219331 + 0.000712649i 0.310113 0.950700i \(-0.399633\pi\)
−0.307920 + 0.951412i \(0.599633\pi\)
\(938\) 0 0
\(939\) −0.887091 2.73019i −0.0289491 0.0890963i
\(940\) 0 0
\(941\) 12.1981 37.5418i 0.397646 1.22383i −0.529235 0.848475i \(-0.677521\pi\)
0.926881 0.375354i \(-0.122479\pi\)
\(942\) 0 0
\(943\) 5.63618i 0.183539i
\(944\) 0 0
\(945\) 1.08685 + 9.05193i 0.0353552 + 0.294459i
\(946\) 0 0
\(947\) −12.9232 17.7872i −0.419946 0.578007i 0.545663 0.838005i \(-0.316278\pi\)
−0.965609 + 0.259998i \(0.916278\pi\)
\(948\) 0 0
\(949\) −17.2970 −0.561484
\(950\) 0 0
\(951\) 35.1472 1.13973
\(952\) 0 0
\(953\) −6.81994 9.38684i −0.220920 0.304070i 0.684143 0.729348i \(-0.260176\pi\)
−0.905063 + 0.425278i \(0.860176\pi\)
\(954\) 0 0
\(955\) −21.0690 + 37.7706i −0.681775 + 1.22223i
\(956\) 0 0
\(957\) 28.7836i 0.930440i
\(958\) 0 0
\(959\) 6.47566 19.9300i 0.209110 0.643574i
\(960\) 0 0
\(961\) 4.33054 + 13.3280i 0.139695 + 0.429937i
\(962\) 0 0
\(963\) −28.8180 9.36354i −0.928647 0.301736i
\(964\) 0 0
\(965\) 0.654826 3.32129i 0.0210796 0.106916i
\(966\) 0 0
\(967\) 2.31918 3.19207i 0.0745797 0.102650i −0.770097 0.637926i \(-0.779792\pi\)
0.844677 + 0.535276i \(0.179792\pi\)
\(968\) 0 0
\(969\) −43.1651 31.3612i −1.38666 1.00747i
\(970\) 0 0
\(971\) −38.8777 + 28.2463i −1.24765 + 0.906467i −0.998083 0.0618915i \(-0.980287\pi\)
−0.249562 + 0.968359i \(0.580287\pi\)
\(972\) 0 0
\(973\) −6.46317 + 2.10001i −0.207200 + 0.0673233i
\(974\) 0 0
\(975\) 4.02715 53.4749i 0.128972 1.71257i
\(976\) 0 0
\(977\) 0.652788 0.212104i 0.0208845 0.00678580i −0.298556 0.954392i \(-0.596505\pi\)
0.319441 + 0.947606i \(0.396505\pi\)
\(978\) 0 0
\(979\) 18.6887 13.5781i 0.597293 0.433959i
\(980\) 0 0
\(981\) −16.0756 11.6796i −0.513256 0.372902i
\(982\) 0 0
\(983\) −7.37476 + 10.1505i −0.235218 + 0.323750i −0.910266 0.414024i \(-0.864123\pi\)
0.675048 + 0.737774i \(0.264123\pi\)
\(984\) 0 0
\(985\) 7.05889 + 15.2443i 0.224915 + 0.485722i
\(986\) 0 0
\(987\) 39.9741 + 12.9884i 1.27239 + 0.413424i
\(988\) 0 0
\(989\) 1.16539 + 3.58671i 0.0370573 + 0.114051i
\(990\) 0 0
\(991\) 0.697131 2.14555i 0.0221451 0.0681556i −0.939373 0.342896i \(-0.888592\pi\)
0.961518 + 0.274741i \(0.0885920\pi\)
\(992\) 0 0
\(993\) 49.8156i 1.58085i
\(994\) 0 0
\(995\) 46.4909 + 9.16615i 1.47386 + 0.290586i
\(996\) 0 0
\(997\) −8.75386 12.0487i −0.277238 0.381585i 0.647579 0.761998i \(-0.275782\pi\)
−0.924816 + 0.380414i \(0.875782\pi\)
\(998\) 0 0
\(999\) 22.3521 0.707188
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.y.d.369.7 32
4.3 odd 2 200.2.q.a.169.2 yes 32
20.3 even 4 1000.2.m.d.401.7 32
20.7 even 4 1000.2.m.e.401.2 32
20.19 odd 2 1000.2.q.c.849.7 32
25.2 odd 20 10000.2.a.br.1.3 16
25.4 even 10 inner 400.2.y.d.129.7 32
25.23 odd 20 10000.2.a.bq.1.14 16
100.3 even 20 1000.2.m.d.601.7 32
100.23 even 20 5000.2.a.r.1.3 16
100.27 even 20 5000.2.a.q.1.14 16
100.47 even 20 1000.2.m.e.601.2 32
100.71 odd 10 1000.2.q.c.649.7 32
100.79 odd 10 200.2.q.a.129.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.129.2 32 100.79 odd 10
200.2.q.a.169.2 yes 32 4.3 odd 2
400.2.y.d.129.7 32 25.4 even 10 inner
400.2.y.d.369.7 32 1.1 even 1 trivial
1000.2.m.d.401.7 32 20.3 even 4
1000.2.m.d.601.7 32 100.3 even 20
1000.2.m.e.401.2 32 20.7 even 4
1000.2.m.e.601.2 32 100.47 even 20
1000.2.q.c.649.7 32 100.71 odd 10
1000.2.q.c.849.7 32 20.19 odd 2
5000.2.a.q.1.14 16 100.27 even 20
5000.2.a.r.1.3 16 100.23 even 20
10000.2.a.bq.1.14 16 25.23 odd 20
10000.2.a.br.1.3 16 25.2 odd 20