L(s) = 1 | + 2.14i·3-s + 9.06i·7-s + 4.41·9-s − 4.28i·11-s + 9.41·13-s − 18·17-s + 36.2i·19-s − 19.4·21-s − 22.9i·23-s + 28.7i·27-s − 44.8·29-s + 35.2i·31-s + 9.16·33-s − 6.58·37-s + 20.1i·39-s + ⋯ |
L(s) = 1 | + 0.713i·3-s + 1.29i·7-s + 0.490·9-s − 0.389i·11-s + 0.724·13-s − 1.05·17-s + 1.90i·19-s − 0.924·21-s − 0.996i·23-s + 1.06i·27-s − 1.54·29-s + 1.13i·31-s + 0.277·33-s − 0.177·37-s + 0.516i·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.500−0.866i)Λ(3−s)
Λ(s)=(=(400s/2ΓC(s+1)L(s)(−0.500−0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.500−0.866i
|
Analytic conductor: |
10.8992 |
Root analytic conductor: |
3.30139 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1), −0.500−0.866i)
|
Particular Values
L(23) |
≈ |
0.759495+1.31548i |
L(21) |
≈ |
0.759495+1.31548i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2.14iT−9T2 |
| 7 | 1−9.06iT−49T2 |
| 11 | 1+4.28iT−121T2 |
| 13 | 1−9.41T+169T2 |
| 17 | 1+18T+289T2 |
| 19 | 1−36.2iT−361T2 |
| 23 | 1+22.9iT−529T2 |
| 29 | 1+44.8T+841T2 |
| 31 | 1−35.2iT−961T2 |
| 37 | 1+6.58T+1.36e3T2 |
| 41 | 1−52.2T+1.68e3T2 |
| 43 | 1+28.8iT−1.84e3T2 |
| 47 | 1−90.1iT−2.20e3T2 |
| 53 | 1+52.2T+2.80e3T2 |
| 59 | 1+17.1iT−3.48e3T2 |
| 61 | 1+50.5T+3.72e3T2 |
| 67 | 1+33.1iT−4.48e3T2 |
| 71 | 1+20.1iT−5.04e3T2 |
| 73 | 1−91.6T+5.32e3T2 |
| 79 | 1−42.8iT−6.24e3T2 |
| 83 | 1+22.3iT−6.88e3T2 |
| 89 | 1−47.6T+7.92e3T2 |
| 97 | 1−160.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15000149856074500658154624326, −10.54752093613568379568362419059, −9.405106244069913301884222809382, −8.834433228648131250019721566610, −7.84996861427044406594145598653, −6.38604832355003618320412593169, −5.61836130131158733517337100905, −4.43567374065122520394415311829, −3.36740599326773650731463560983, −1.85041083219938140380351979676,
0.67313751608410153172722189414, 2.04259590323300974719653698673, 3.78301534386117197411365360535, 4.69902783616073130992015576810, 6.24950296608100761148437604098, 7.18164334360630482821429264944, 7.57910497345413696887346683788, 8.960453388153512301876502061978, 9.834773817080084592803463004735, 10.98054683495287956491086378383