Properties

Label 400.3.b.g
Level 400400
Weight 33
Character orbit 400.b
Analytic conductor 10.89910.899
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(351,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.351");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 400.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.899210574410.8992105744
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,5)\Q(\sqrt{-3}, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+2x2+x+1 x^{4} - x^{3} + 2x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 273 2^{7}\cdot 3
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β2q7+(β39)q92β1q11+(β34)q1318q174β2q19+(β36)q21+(3β2+2β1)q23++(12β2+42β1)q99+O(q100) q + \beta_1 q^{3} - \beta_{2} q^{7} + ( - \beta_{3} - 9) q^{9} - 2 \beta_1 q^{11} + ( - \beta_{3} - 4) q^{13} - 18 q^{17} - 4 \beta_{2} q^{19} + (\beta_{3} - 6) q^{21} + (3 \beta_{2} + 2 \beta_1) q^{23}+ \cdots + (12 \beta_{2} + 42 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q36q916q1372q1724q2172q29+144q3380q37+48q41+28q4948q5396q57256q6172q69+152q73+48q77+396q8124q89++104q97+O(q100) 4 q - 36 q^{9} - 16 q^{13} - 72 q^{17} - 24 q^{21} - 72 q^{29} + 144 q^{33} - 80 q^{37} + 48 q^{41} + 28 q^{49} - 48 q^{53} - 96 q^{57} - 256 q^{61} - 72 q^{69} + 152 q^{73} + 48 q^{77} + 396 q^{81} - 24 q^{89}+ \cdots + 104 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+2x2+x+1 x^{4} - x^{3} + 2x^{2} + x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+4ν+1 \nu^{3} + 4\nu + 1 Copy content Toggle raw display
β2\beta_{2}== 5ν3+8ν212ν1 -5\nu^{3} + 8\nu^{2} - 12\nu - 1 Copy content Toggle raw display
β3\beta_{3}== 6ν312 -6\nu^{3} - 12 Copy content Toggle raw display
ν\nu== (β3+6β1+6)/24 ( \beta_{3} + 6\beta _1 + 6 ) / 24 Copy content Toggle raw display
ν2\nu^{2}== (β3+3β2+9β118)/24 ( -\beta_{3} + 3\beta_{2} + 9\beta _1 - 18 ) / 24 Copy content Toggle raw display
ν3\nu^{3}== (β312)/6 ( -\beta_{3} - 12 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
351.1
0.809017 1.40126i
−0.309017 0.535233i
−0.309017 + 0.535233i
0.809017 + 1.40126i
0 5.60503i 0 0 0 1.32317i 0 −22.4164 0
351.2 0 2.14093i 0 0 0 9.06914i 0 4.41641 0
351.3 0 2.14093i 0 0 0 9.06914i 0 4.41641 0
351.4 0 5.60503i 0 0 0 1.32317i 0 −22.4164 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.3.b.g 4
3.b odd 2 1 3600.3.e.bb 4
4.b odd 2 1 inner 400.3.b.g 4
5.b even 2 1 80.3.b.a 4
5.c odd 4 2 400.3.h.d 8
8.b even 2 1 1600.3.b.k 4
8.d odd 2 1 1600.3.b.k 4
12.b even 2 1 3600.3.e.bb 4
15.d odd 2 1 720.3.e.c 4
15.e even 4 2 3600.3.j.k 8
20.d odd 2 1 80.3.b.a 4
20.e even 4 2 400.3.h.d 8
40.e odd 2 1 320.3.b.a 4
40.f even 2 1 320.3.b.a 4
40.i odd 4 2 1600.3.h.p 8
40.k even 4 2 1600.3.h.p 8
60.h even 2 1 720.3.e.c 4
60.l odd 4 2 3600.3.j.k 8
80.k odd 4 2 1280.3.g.f 8
80.q even 4 2 1280.3.g.f 8
120.i odd 2 1 2880.3.e.b 4
120.m even 2 1 2880.3.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.3.b.a 4 5.b even 2 1
80.3.b.a 4 20.d odd 2 1
320.3.b.a 4 40.e odd 2 1
320.3.b.a 4 40.f even 2 1
400.3.b.g 4 1.a even 1 1 trivial
400.3.b.g 4 4.b odd 2 1 inner
400.3.h.d 8 5.c odd 4 2
400.3.h.d 8 20.e even 4 2
720.3.e.c 4 15.d odd 2 1
720.3.e.c 4 60.h even 2 1
1280.3.g.f 8 80.k odd 4 2
1280.3.g.f 8 80.q even 4 2
1600.3.b.k 4 8.b even 2 1
1600.3.b.k 4 8.d odd 2 1
1600.3.h.p 8 40.i odd 4 2
1600.3.h.p 8 40.k even 4 2
2880.3.e.b 4 120.i odd 2 1
2880.3.e.b 4 120.m even 2 1
3600.3.e.bb 4 3.b odd 2 1
3600.3.e.bb 4 12.b even 2 1
3600.3.j.k 8 15.e even 4 2
3600.3.j.k 8 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(400,[χ])S_{3}^{\mathrm{new}}(400, [\chi]):

T34+36T32+144 T_{3}^{4} + 36T_{3}^{2} + 144 Copy content Toggle raw display
T132+8T13164 T_{13}^{2} + 8T_{13} - 164 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+36T2+144 T^{4} + 36T^{2} + 144 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+84T2+144 T^{4} + 84T^{2} + 144 Copy content Toggle raw display
1111 T4+144T2+2304 T^{4} + 144T^{2} + 2304 Copy content Toggle raw display
1313 (T2+8T164)2 (T^{2} + 8 T - 164)^{2} Copy content Toggle raw display
1717 (T+18)4 (T + 18)^{4} Copy content Toggle raw display
1919 T4+1344T2+36864 T^{4} + 1344 T^{2} + 36864 Copy content Toggle raw display
2323 T4+756T2+121104 T^{4} + 756 T^{2} + 121104 Copy content Toggle raw display
2929 (T2+36T396)2 (T^{2} + 36 T - 396)^{2} Copy content Toggle raw display
3131 T4+3024T2+2214144 T^{4} + 3024 T^{2} + 2214144 Copy content Toggle raw display
3737 (T2+40T+220)2 (T^{2} + 40 T + 220)^{2} Copy content Toggle raw display
4141 (T224T1476)2 (T^{2} - 24 T - 1476)^{2} Copy content Toggle raw display
4343 T4+1476T2+535824 T^{4} + 1476 T^{2} + 535824 Copy content Toggle raw display
4747 T4+8244T2+898704 T^{4} + 8244 T^{2} + 898704 Copy content Toggle raw display
5353 (T2+24T1476)2 (T^{2} + 24 T - 1476)^{2} Copy content Toggle raw display
5959 T4+2304T2+589824 T^{4} + 2304 T^{2} + 589824 Copy content Toggle raw display
6161 (T2+128T+3916)2 (T^{2} + 128 T + 3916)^{2} Copy content Toggle raw display
6767 T4+2436T2+1468944 T^{4} + 2436 T^{2} + 1468944 Copy content Toggle raw display
7171 T4+9936T2+3873024 T^{4} + 9936 T^{2} + 3873024 Copy content Toggle raw display
7373 (T276T1436)2 (T^{2} - 76 T - 1436)^{2} Copy content Toggle raw display
7979 T4+14400T2+23040000 T^{4} + 14400 T^{2} + 23040000 Copy content Toggle raw display
8383 T4+8964T2+4210704 T^{4} + 8964 T^{2} + 4210704 Copy content Toggle raw display
8989 (T2+12T2844)2 (T^{2} + 12 T - 2844)^{2} Copy content Toggle raw display
9797 (T252T17324)2 (T^{2} - 52 T - 17324)^{2} Copy content Toggle raw display
show more
show less