Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [400,3,Mod(351,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.351");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 400.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 80) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
351.1 |
|
0 | − | 5.60503i | 0 | 0 | 0 | 1.32317i | 0 | −22.4164 | 0 | |||||||||||||||||||||||||||||
351.2 | 0 | − | 2.14093i | 0 | 0 | 0 | − | 9.06914i | 0 | 4.41641 | 0 | |||||||||||||||||||||||||||||
351.3 | 0 | 2.14093i | 0 | 0 | 0 | 9.06914i | 0 | 4.41641 | 0 | |||||||||||||||||||||||||||||||
351.4 | 0 | 5.60503i | 0 | 0 | 0 | − | 1.32317i | 0 | −22.4164 | 0 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.3.b.g | 4 | |
3.b | odd | 2 | 1 | 3600.3.e.bb | 4 | ||
4.b | odd | 2 | 1 | inner | 400.3.b.g | 4 | |
5.b | even | 2 | 1 | 80.3.b.a | ✓ | 4 | |
5.c | odd | 4 | 2 | 400.3.h.d | 8 | ||
8.b | even | 2 | 1 | 1600.3.b.k | 4 | ||
8.d | odd | 2 | 1 | 1600.3.b.k | 4 | ||
12.b | even | 2 | 1 | 3600.3.e.bb | 4 | ||
15.d | odd | 2 | 1 | 720.3.e.c | 4 | ||
15.e | even | 4 | 2 | 3600.3.j.k | 8 | ||
20.d | odd | 2 | 1 | 80.3.b.a | ✓ | 4 | |
20.e | even | 4 | 2 | 400.3.h.d | 8 | ||
40.e | odd | 2 | 1 | 320.3.b.a | 4 | ||
40.f | even | 2 | 1 | 320.3.b.a | 4 | ||
40.i | odd | 4 | 2 | 1600.3.h.p | 8 | ||
40.k | even | 4 | 2 | 1600.3.h.p | 8 | ||
60.h | even | 2 | 1 | 720.3.e.c | 4 | ||
60.l | odd | 4 | 2 | 3600.3.j.k | 8 | ||
80.k | odd | 4 | 2 | 1280.3.g.f | 8 | ||
80.q | even | 4 | 2 | 1280.3.g.f | 8 | ||
120.i | odd | 2 | 1 | 2880.3.e.b | 4 | ||
120.m | even | 2 | 1 | 2880.3.e.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
80.3.b.a | ✓ | 4 | 5.b | even | 2 | 1 | |
80.3.b.a | ✓ | 4 | 20.d | odd | 2 | 1 | |
320.3.b.a | 4 | 40.e | odd | 2 | 1 | ||
320.3.b.a | 4 | 40.f | even | 2 | 1 | ||
400.3.b.g | 4 | 1.a | even | 1 | 1 | trivial | |
400.3.b.g | 4 | 4.b | odd | 2 | 1 | inner | |
400.3.h.d | 8 | 5.c | odd | 4 | 2 | ||
400.3.h.d | 8 | 20.e | even | 4 | 2 | ||
720.3.e.c | 4 | 15.d | odd | 2 | 1 | ||
720.3.e.c | 4 | 60.h | even | 2 | 1 | ||
1280.3.g.f | 8 | 80.k | odd | 4 | 2 | ||
1280.3.g.f | 8 | 80.q | even | 4 | 2 | ||
1600.3.b.k | 4 | 8.b | even | 2 | 1 | ||
1600.3.b.k | 4 | 8.d | odd | 2 | 1 | ||
1600.3.h.p | 8 | 40.i | odd | 4 | 2 | ||
1600.3.h.p | 8 | 40.k | even | 4 | 2 | ||
2880.3.e.b | 4 | 120.i | odd | 2 | 1 | ||
2880.3.e.b | 4 | 120.m | even | 2 | 1 | ||
3600.3.e.bb | 4 | 3.b | odd | 2 | 1 | ||
3600.3.e.bb | 4 | 12.b | even | 2 | 1 | ||
3600.3.j.k | 8 | 15.e | even | 4 | 2 | ||
3600.3.j.k | 8 | 60.l | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|