L(s) = 1 | + (2.35 − 2.35i)3-s + (−0.458 − 0.458i)7-s + 15.9i·9-s − 23.0i·11-s + (−1.65 − 1.65i)13-s + (63.9 − 63.9i)17-s + 65.6·19-s − 2.15·21-s + (45.2 − 45.2i)23-s + (100. + 100. i)27-s + 59.8i·29-s − 279. i·31-s + (−54.2 − 54.2i)33-s + (100. − 100. i)37-s − 7.77·39-s + ⋯ |
L(s) = 1 | + (0.452 − 0.452i)3-s + (−0.0247 − 0.0247i)7-s + 0.590i·9-s − 0.632i·11-s + (−0.0352 − 0.0352i)13-s + (0.912 − 0.912i)17-s + 0.793·19-s − 0.0224·21-s + (0.410 − 0.410i)23-s + (0.719 + 0.719i)27-s + 0.383i·29-s − 1.61i·31-s + (−0.286 − 0.286i)33-s + (0.446 − 0.446i)37-s − 0.0319·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.559+0.828i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(0.559+0.828i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.559+0.828i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), 0.559+0.828i)
|
Particular Values
L(2) |
≈ |
2.235553074 |
L(21) |
≈ |
2.235553074 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−2.35+2.35i)T−27iT2 |
| 7 | 1+(0.458+0.458i)T+343iT2 |
| 11 | 1+23.0iT−1.33e3T2 |
| 13 | 1+(1.65+1.65i)T+2.19e3iT2 |
| 17 | 1+(−63.9+63.9i)T−4.91e3iT2 |
| 19 | 1−65.6T+6.85e3T2 |
| 23 | 1+(−45.2+45.2i)T−1.21e4iT2 |
| 29 | 1−59.8iT−2.43e4T2 |
| 31 | 1+279.iT−2.97e4T2 |
| 37 | 1+(−100.+100.i)T−5.06e4iT2 |
| 41 | 1+274.T+6.89e4T2 |
| 43 | 1+(−263.+263.i)T−7.95e4iT2 |
| 47 | 1+(−391.−391.i)T+1.03e5iT2 |
| 53 | 1+(265.+265.i)T+1.48e5iT2 |
| 59 | 1−121.T+2.05e5T2 |
| 61 | 1+617.T+2.26e5T2 |
| 67 | 1+(−674.−674.i)T+3.00e5iT2 |
| 71 | 1+829.iT−3.57e5T2 |
| 73 | 1+(−110.−110.i)T+3.89e5iT2 |
| 79 | 1+62.7T+4.93e5T2 |
| 83 | 1+(−655.+655.i)T−5.71e5iT2 |
| 89 | 1+92.0iT−7.04e5T2 |
| 97 | 1+(−618.+618.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76470365887660149915174020575, −9.723489159206760435727031702512, −8.810315047559895941338817968406, −7.81111822560352489141426194350, −7.22841418417708601311366298835, −5.88396028805799669750964870066, −4.91820287061574096265222211537, −3.41793898933906880988970144473, −2.35763920598425276161860708298, −0.822267001719919992232849534752,
1.27311687418621771021707025739, 2.95712439847344203077826395208, 3.89342476927717586765195205512, 5.07123682323733986675034214385, 6.24453183449785098142901813432, 7.33209792116143031061366447846, 8.320298101152083539107578376555, 9.306470953877234526860556117402, 9.927880642176014125380611684588, 10.83338566816038143812548960866