L(s) = 1 | + (2.35 − 2.35i)3-s + (−0.458 − 0.458i)7-s + 15.9i·9-s − 23.0i·11-s + (−1.65 − 1.65i)13-s + (63.9 − 63.9i)17-s + 65.6·19-s − 2.15·21-s + (45.2 − 45.2i)23-s + (100. + 100. i)27-s + 59.8i·29-s − 279. i·31-s + (−54.2 − 54.2i)33-s + (100. − 100. i)37-s − 7.77·39-s + ⋯ |
L(s) = 1 | + (0.452 − 0.452i)3-s + (−0.0247 − 0.0247i)7-s + 0.590i·9-s − 0.632i·11-s + (−0.0352 − 0.0352i)13-s + (0.912 − 0.912i)17-s + 0.793·19-s − 0.0224·21-s + (0.410 − 0.410i)23-s + (0.719 + 0.719i)27-s + 0.383i·29-s − 1.61i·31-s + (−0.286 − 0.286i)33-s + (0.446 − 0.446i)37-s − 0.0319·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.559 + 0.828i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.559 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.235553074\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.235553074\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-2.35 + 2.35i)T - 27iT^{2} \) |
| 7 | \( 1 + (0.458 + 0.458i)T + 343iT^{2} \) |
| 11 | \( 1 + 23.0iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (1.65 + 1.65i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (-63.9 + 63.9i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 65.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-45.2 + 45.2i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 - 59.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 279. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-100. + 100. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 274.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-263. + 263. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (-391. - 391. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (265. + 265. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 - 121.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 617.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-674. - 674. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 829. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-110. - 110. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + 62.7T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-655. + 655. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 92.0iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-618. + 618. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76470365887660149915174020575, −9.723489159206760435727031702512, −8.810315047559895941338817968406, −7.81111822560352489141426194350, −7.22841418417708601311366298835, −5.88396028805799669750964870066, −4.91820287061574096265222211537, −3.41793898933906880988970144473, −2.35763920598425276161860708298, −0.822267001719919992232849534752,
1.27311687418621771021707025739, 2.95712439847344203077826395208, 3.89342476927717586765195205512, 5.07123682323733986675034214385, 6.24453183449785098142901813432, 7.33209792116143031061366447846, 8.320298101152083539107578376555, 9.306470953877234526860556117402, 9.927880642176014125380611684588, 10.83338566816038143812548960866