Properties

Label 400.4.n.g.143.5
Level $400$
Weight $4$
Character 400.143
Analytic conductor $23.601$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6007640023\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.11007531417600000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.5
Root \(1.56290 - 0.418778i\) of defining polynomial
Character \(\chi\) \(=\) 400.143
Dual form 400.4.n.g.207.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.35082 - 2.35082i) q^{3} +(-0.458991 - 0.458991i) q^{7} +15.9473i q^{9} -23.0788i q^{11} +(-1.65449 - 1.65449i) q^{13} +(63.9875 - 63.9875i) q^{17} +65.6811 q^{19} -2.15800 q^{21} +(45.2921 - 45.2921i) q^{23} +(100.961 + 100.961i) q^{27} +59.8420i q^{29} -279.285i q^{31} +(-54.2540 - 54.2540i) q^{33} +(100.494 - 100.494i) q^{37} -7.77882 q^{39} -274.789 q^{41} +(263.279 - 263.279i) q^{43} +(391.588 + 391.588i) q^{47} -342.579i q^{49} -300.846i q^{51} +(-265.404 - 265.404i) q^{53} +(154.404 - 154.404i) q^{57} +121.061 q^{59} -617.315 q^{61} +(7.31967 - 7.31967i) q^{63} +(674.536 + 674.536i) q^{67} -212.947i q^{69} -829.622i q^{71} +(110.657 + 110.657i) q^{73} +(-10.5930 + 10.5930i) q^{77} -62.7483 q^{79} +44.1046 q^{81} +(655.394 - 655.394i) q^{83} +(140.677 + 140.677i) q^{87} -92.0007i q^{89} +1.51879i q^{91} +(-656.549 - 656.549i) q^{93} +(618.474 - 618.474i) q^{97} +368.045 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 1856 q^{21} - 1968 q^{41} - 1984 q^{61} - 9616 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35082 2.35082i 0.452415 0.452415i −0.443741 0.896155i \(-0.646349\pi\)
0.896155 + 0.443741i \(0.146349\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.458991 0.458991i −0.0247832 0.0247832i 0.694607 0.719390i \(-0.255578\pi\)
−0.719390 + 0.694607i \(0.755578\pi\)
\(8\) 0 0
\(9\) 15.9473i 0.590642i
\(10\) 0 0
\(11\) 23.0788i 0.632593i −0.948660 0.316296i \(-0.897561\pi\)
0.948660 0.316296i \(-0.102439\pi\)
\(12\) 0 0
\(13\) −1.65449 1.65449i −0.0352980 0.0352980i 0.689237 0.724536i \(-0.257946\pi\)
−0.724536 + 0.689237i \(0.757946\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 63.9875 63.9875i 0.912897 0.912897i −0.0836026 0.996499i \(-0.526643\pi\)
0.996499 + 0.0836026i \(0.0266426\pi\)
\(18\) 0 0
\(19\) 65.6811 0.793067 0.396534 0.918020i \(-0.370213\pi\)
0.396534 + 0.918020i \(0.370213\pi\)
\(20\) 0 0
\(21\) −2.15800 −0.0224245
\(22\) 0 0
\(23\) 45.2921 45.2921i 0.410611 0.410611i −0.471340 0.881951i \(-0.656230\pi\)
0.881951 + 0.471340i \(0.156230\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 100.961 + 100.961i 0.719630 + 0.719630i
\(28\) 0 0
\(29\) 59.8420i 0.383186i 0.981475 + 0.191593i \(0.0613653\pi\)
−0.981475 + 0.191593i \(0.938635\pi\)
\(30\) 0 0
\(31\) 279.285i 1.61810i −0.587739 0.809051i \(-0.699982\pi\)
0.587739 0.809051i \(-0.300018\pi\)
\(32\) 0 0
\(33\) −54.2540 54.2540i −0.286194 0.286194i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 100.494 100.494i 0.446515 0.446515i −0.447679 0.894194i \(-0.647749\pi\)
0.894194 + 0.447679i \(0.147749\pi\)
\(38\) 0 0
\(39\) −7.77882 −0.0319387
\(40\) 0 0
\(41\) −274.789 −1.04670 −0.523352 0.852116i \(-0.675319\pi\)
−0.523352 + 0.852116i \(0.675319\pi\)
\(42\) 0 0
\(43\) 263.279 263.279i 0.933714 0.933714i −0.0642215 0.997936i \(-0.520456\pi\)
0.997936 + 0.0642215i \(0.0204564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 391.588 + 391.588i 1.21530 + 1.21530i 0.969260 + 0.246038i \(0.0791287\pi\)
0.246038 + 0.969260i \(0.420871\pi\)
\(48\) 0 0
\(49\) 342.579i 0.998772i
\(50\) 0 0
\(51\) 300.846i 0.826016i
\(52\) 0 0
\(53\) −265.404 265.404i −0.687851 0.687851i 0.273906 0.961757i \(-0.411684\pi\)
−0.961757 + 0.273906i \(0.911684\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 154.404 154.404i 0.358795 0.358795i
\(58\) 0 0
\(59\) 121.061 0.267132 0.133566 0.991040i \(-0.457357\pi\)
0.133566 + 0.991040i \(0.457357\pi\)
\(60\) 0 0
\(61\) −617.315 −1.29572 −0.647862 0.761758i \(-0.724337\pi\)
−0.647862 + 0.761758i \(0.724337\pi\)
\(62\) 0 0
\(63\) 7.31967 7.31967i 0.0146380 0.0146380i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 674.536 + 674.536i 1.22997 + 1.22997i 0.963976 + 0.265990i \(0.0856988\pi\)
0.265990 + 0.963976i \(0.414301\pi\)
\(68\) 0 0
\(69\) 212.947i 0.371533i
\(70\) 0 0
\(71\) 829.622i 1.38673i −0.720586 0.693366i \(-0.756127\pi\)
0.720586 0.693366i \(-0.243873\pi\)
\(72\) 0 0
\(73\) 110.657 + 110.657i 0.177416 + 0.177416i 0.790229 0.612812i \(-0.209962\pi\)
−0.612812 + 0.790229i \(0.709962\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.5930 + 10.5930i −0.0156777 + 0.0156777i
\(78\) 0 0
\(79\) −62.7483 −0.0893638 −0.0446819 0.999001i \(-0.514227\pi\)
−0.0446819 + 0.999001i \(0.514227\pi\)
\(80\) 0 0
\(81\) 44.1046 0.0605002
\(82\) 0 0
\(83\) 655.394 655.394i 0.866733 0.866733i −0.125376 0.992109i \(-0.540014\pi\)
0.992109 + 0.125376i \(0.0400137\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 140.677 + 140.677i 0.173359 + 0.173359i
\(88\) 0 0
\(89\) 92.0007i 0.109574i −0.998498 0.0547868i \(-0.982552\pi\)
0.998498 0.0547868i \(-0.0174479\pi\)
\(90\) 0 0
\(91\) 1.51879i 0.00174959i
\(92\) 0 0
\(93\) −656.549 656.549i −0.732053 0.732053i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 618.474 618.474i 0.647387 0.647387i −0.304974 0.952361i \(-0.598648\pi\)
0.952361 + 0.304974i \(0.0986476\pi\)
\(98\) 0 0
\(99\) 368.045 0.373636
\(100\) 0 0
\(101\) −246.158 −0.242511 −0.121256 0.992621i \(-0.538692\pi\)
−0.121256 + 0.992621i \(0.538692\pi\)
\(102\) 0 0
\(103\) −175.784 + 175.784i −0.168161 + 0.168161i −0.786170 0.618010i \(-0.787939\pi\)
0.618010 + 0.786170i \(0.287939\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −446.463 446.463i −0.403376 0.403376i 0.476045 0.879421i \(-0.342070\pi\)
−0.879421 + 0.476045i \(0.842070\pi\)
\(108\) 0 0
\(109\) 1523.84i 1.33906i 0.742785 + 0.669530i \(0.233504\pi\)
−0.742785 + 0.669530i \(0.766496\pi\)
\(110\) 0 0
\(111\) 472.484i 0.404020i
\(112\) 0 0
\(113\) 890.818 + 890.818i 0.741603 + 0.741603i 0.972886 0.231283i \(-0.0742924\pi\)
−0.231283 + 0.972886i \(0.574292\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 26.3848 26.3848i 0.0208485 0.0208485i
\(118\) 0 0
\(119\) −58.7393 −0.0452489
\(120\) 0 0
\(121\) 798.369 0.599826
\(122\) 0 0
\(123\) −645.979 + 645.979i −0.473544 + 0.473544i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −614.500 614.500i −0.429355 0.429355i 0.459054 0.888409i \(-0.348189\pi\)
−0.888409 + 0.459054i \(0.848189\pi\)
\(128\) 0 0
\(129\) 1237.84i 0.844852i
\(130\) 0 0
\(131\) 1279.04i 0.853057i 0.904474 + 0.426528i \(0.140264\pi\)
−0.904474 + 0.426528i \(0.859736\pi\)
\(132\) 0 0
\(133\) −30.1470 30.1470i −0.0196547 0.0196547i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −47.6796 + 47.6796i −0.0297339 + 0.0297339i −0.721817 0.692084i \(-0.756693\pi\)
0.692084 + 0.721817i \(0.256693\pi\)
\(138\) 0 0
\(139\) 788.310 0.481033 0.240516 0.970645i \(-0.422683\pi\)
0.240516 + 0.970645i \(0.422683\pi\)
\(140\) 0 0
\(141\) 1841.10 1.09964
\(142\) 0 0
\(143\) −38.1838 + 38.1838i −0.0223293 + 0.0223293i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −805.339 805.339i −0.451859 0.451859i
\(148\) 0 0
\(149\) 2219.84i 1.22051i 0.792204 + 0.610257i \(0.208934\pi\)
−0.792204 + 0.610257i \(0.791066\pi\)
\(150\) 0 0
\(151\) 2166.49i 1.16759i 0.811900 + 0.583797i \(0.198433\pi\)
−0.811900 + 0.583797i \(0.801567\pi\)
\(152\) 0 0
\(153\) 1020.43 + 1020.43i 0.539195 + 0.539195i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2392.68 + 2392.68i −1.21628 + 1.21628i −0.247359 + 0.968924i \(0.579563\pi\)
−0.968924 + 0.247359i \(0.920437\pi\)
\(158\) 0 0
\(159\) −1247.83 −0.622388
\(160\) 0 0
\(161\) −41.5773 −0.0203525
\(162\) 0 0
\(163\) −1305.98 + 1305.98i −0.627561 + 0.627561i −0.947454 0.319893i \(-0.896353\pi\)
0.319893 + 0.947454i \(0.396353\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2151.02 2151.02i −0.996712 0.996712i 0.00328303 0.999995i \(-0.498955\pi\)
−0.999995 + 0.00328303i \(0.998955\pi\)
\(168\) 0 0
\(169\) 2191.53i 0.997508i
\(170\) 0 0
\(171\) 1047.44i 0.468419i
\(172\) 0 0
\(173\) −1294.66 1294.66i −0.568967 0.568967i 0.362872 0.931839i \(-0.381796\pi\)
−0.931839 + 0.362872i \(0.881796\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 284.592 284.592i 0.120855 0.120855i
\(178\) 0 0
\(179\) −3620.52 −1.51179 −0.755894 0.654694i \(-0.772797\pi\)
−0.755894 + 0.654694i \(0.772797\pi\)
\(180\) 0 0
\(181\) −943.156 −0.387316 −0.193658 0.981069i \(-0.562035\pi\)
−0.193658 + 0.981069i \(0.562035\pi\)
\(182\) 0 0
\(183\) −1451.19 + 1451.19i −0.586204 + 0.586204i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1476.75 1476.75i −0.577492 0.577492i
\(188\) 0 0
\(189\) 92.6805i 0.0356694i
\(190\) 0 0
\(191\) 4157.37i 1.57496i 0.616342 + 0.787479i \(0.288614\pi\)
−0.616342 + 0.787479i \(0.711386\pi\)
\(192\) 0 0
\(193\) 2725.68 + 2725.68i 1.01657 + 1.01657i 0.999860 + 0.0167134i \(0.00532028\pi\)
0.0167134 + 0.999860i \(0.494680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3157.61 + 3157.61i −1.14198 + 1.14198i −0.153892 + 0.988088i \(0.549181\pi\)
−0.988088 + 0.153892i \(0.950819\pi\)
\(198\) 0 0
\(199\) 2008.14 0.715344 0.357672 0.933847i \(-0.383571\pi\)
0.357672 + 0.933847i \(0.383571\pi\)
\(200\) 0 0
\(201\) 3171.42 1.11291
\(202\) 0 0
\(203\) 27.4669 27.4669i 0.00949655 0.00949655i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 722.288 + 722.288i 0.242524 + 0.242524i
\(208\) 0 0
\(209\) 1515.84i 0.501689i
\(210\) 0 0
\(211\) 1687.28i 0.550506i 0.961372 + 0.275253i \(0.0887617\pi\)
−0.961372 + 0.275253i \(0.911238\pi\)
\(212\) 0 0
\(213\) −1950.29 1950.29i −0.627378 0.627378i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −128.189 + 128.189i −0.0401017 + 0.0401017i
\(218\) 0 0
\(219\) 520.267 0.160532
\(220\) 0 0
\(221\) −211.734 −0.0644469
\(222\) 0 0
\(223\) −998.709 + 998.709i −0.299903 + 0.299903i −0.840976 0.541072i \(-0.818018\pi\)
0.541072 + 0.840976i \(0.318018\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1566.54 1566.54i −0.458039 0.458039i 0.439972 0.898011i \(-0.354988\pi\)
−0.898011 + 0.439972i \(0.854988\pi\)
\(228\) 0 0
\(229\) 2700.95i 0.779404i 0.920941 + 0.389702i \(0.127422\pi\)
−0.920941 + 0.389702i \(0.872578\pi\)
\(230\) 0 0
\(231\) 49.8042i 0.0141856i
\(232\) 0 0
\(233\) 2670.59 + 2670.59i 0.750884 + 0.750884i 0.974644 0.223761i \(-0.0718334\pi\)
−0.223761 + 0.974644i \(0.571833\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −147.510 + 147.510i −0.0404295 + 0.0404295i
\(238\) 0 0
\(239\) −1786.81 −0.483594 −0.241797 0.970327i \(-0.577737\pi\)
−0.241797 + 0.970327i \(0.577737\pi\)
\(240\) 0 0
\(241\) 525.789 0.140535 0.0702677 0.997528i \(-0.477615\pi\)
0.0702677 + 0.997528i \(0.477615\pi\)
\(242\) 0 0
\(243\) −2622.27 + 2622.27i −0.692259 + 0.692259i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −108.669 108.669i −0.0279937 0.0279937i
\(248\) 0 0
\(249\) 3081.42i 0.784246i
\(250\) 0 0
\(251\) 3555.70i 0.894158i −0.894494 0.447079i \(-0.852464\pi\)
0.894494 0.447079i \(-0.147536\pi\)
\(252\) 0 0
\(253\) −1045.29 1045.29i −0.259750 0.259750i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1775.11 1775.11i 0.430849 0.430849i −0.458068 0.888917i \(-0.651458\pi\)
0.888917 + 0.458068i \(0.151458\pi\)
\(258\) 0 0
\(259\) −92.2512 −0.0221321
\(260\) 0 0
\(261\) −954.320 −0.226325
\(262\) 0 0
\(263\) 5778.06 5778.06i 1.35472 1.35472i 0.474417 0.880300i \(-0.342659\pi\)
0.880300 0.474417i \(-0.157341\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −216.277 216.277i −0.0495727 0.0495727i
\(268\) 0 0
\(269\) 7948.00i 1.80148i 0.434359 + 0.900740i \(0.356975\pi\)
−0.434359 + 0.900740i \(0.643025\pi\)
\(270\) 0 0
\(271\) 997.629i 0.223622i 0.993729 + 0.111811i \(0.0356652\pi\)
−0.993729 + 0.111811i \(0.964335\pi\)
\(272\) 0 0
\(273\) 3.57041 + 3.57041i 0.000791542 + 0.000791542i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3674.85 3674.85i 0.797114 0.797114i −0.185526 0.982639i \(-0.559399\pi\)
0.982639 + 0.185526i \(0.0593987\pi\)
\(278\) 0 0
\(279\) 4453.86 0.955719
\(280\) 0 0
\(281\) 110.524 0.0234637 0.0117319 0.999931i \(-0.496266\pi\)
0.0117319 + 0.999931i \(0.496266\pi\)
\(282\) 0 0
\(283\) 293.182 293.182i 0.0615825 0.0615825i −0.675645 0.737227i \(-0.736135\pi\)
0.737227 + 0.675645i \(0.236135\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 126.126 + 126.126i 0.0259406 + 0.0259406i
\(288\) 0 0
\(289\) 3275.79i 0.666760i
\(290\) 0 0
\(291\) 2907.84i 0.585775i
\(292\) 0 0
\(293\) −5842.01 5842.01i −1.16483 1.16483i −0.983406 0.181420i \(-0.941931\pi\)
−0.181420 0.983406i \(-0.558069\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2330.07 2330.07i 0.455233 0.455233i
\(298\) 0 0
\(299\) −149.871 −0.0289875
\(300\) 0 0
\(301\) −241.685 −0.0462808
\(302\) 0 0
\(303\) −578.672 + 578.672i −0.109716 + 0.109716i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6610.85 + 6610.85i 1.22899 + 1.22899i 0.964344 + 0.264650i \(0.0852565\pi\)
0.264650 + 0.964344i \(0.414743\pi\)
\(308\) 0 0
\(309\) 826.473i 0.152157i
\(310\) 0 0
\(311\) 8080.44i 1.47331i −0.676268 0.736655i \(-0.736404\pi\)
0.676268 0.736655i \(-0.263596\pi\)
\(312\) 0 0
\(313\) 5294.89 + 5294.89i 0.956182 + 0.956182i 0.999079 0.0428977i \(-0.0136589\pi\)
−0.0428977 + 0.999079i \(0.513659\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2611.67 + 2611.67i −0.462732 + 0.462732i −0.899550 0.436818i \(-0.856105\pi\)
0.436818 + 0.899550i \(0.356105\pi\)
\(318\) 0 0
\(319\) 1381.08 0.242400
\(320\) 0 0
\(321\) −2099.11 −0.364986
\(322\) 0 0
\(323\) 4202.77 4202.77i 0.723988 0.723988i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3582.27 + 3582.27i 0.605810 + 0.605810i
\(328\) 0 0
\(329\) 359.471i 0.0602379i
\(330\) 0 0
\(331\) 6573.48i 1.09157i −0.837924 0.545787i \(-0.816231\pi\)
0.837924 0.545787i \(-0.183769\pi\)
\(332\) 0 0
\(333\) 1602.60 + 1602.60i 0.263730 + 0.263730i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6325.93 6325.93i 1.02254 1.02254i 0.0227988 0.999740i \(-0.492742\pi\)
0.999740 0.0227988i \(-0.00725773\pi\)
\(338\) 0 0
\(339\) 4188.30 0.671024
\(340\) 0 0
\(341\) −6445.58 −1.02360
\(342\) 0 0
\(343\) −314.674 + 314.674i −0.0495359 + 0.0495359i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1456.40 + 1456.40i 0.225312 + 0.225312i 0.810731 0.585419i \(-0.199070\pi\)
−0.585419 + 0.810731i \(0.699070\pi\)
\(348\) 0 0
\(349\) 4287.31i 0.657577i −0.944404 0.328789i \(-0.893360\pi\)
0.944404 0.328789i \(-0.106640\pi\)
\(350\) 0 0
\(351\) 334.080i 0.0508030i
\(352\) 0 0
\(353\) −6611.25 6611.25i −0.996832 0.996832i 0.00316330 0.999995i \(-0.498993\pi\)
−0.999995 + 0.00316330i \(0.998993\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −138.085 + 138.085i −0.0204713 + 0.0204713i
\(358\) 0 0
\(359\) −6278.75 −0.923063 −0.461531 0.887124i \(-0.652700\pi\)
−0.461531 + 0.887124i \(0.652700\pi\)
\(360\) 0 0
\(361\) −2544.99 −0.371044
\(362\) 0 0
\(363\) 1876.82 1876.82i 0.271370 0.271370i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6842.24 + 6842.24i 0.973193 + 0.973193i 0.999650 0.0264571i \(-0.00842255\pi\)
−0.0264571 + 0.999650i \(0.508423\pi\)
\(368\) 0 0
\(369\) 4382.16i 0.618228i
\(370\) 0 0
\(371\) 243.636i 0.0340942i
\(372\) 0 0
\(373\) −6046.84 6046.84i −0.839393 0.839393i 0.149386 0.988779i \(-0.452270\pi\)
−0.988779 + 0.149386i \(0.952270\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 99.0083 99.0083i 0.0135257 0.0135257i
\(378\) 0 0
\(379\) 3999.47 0.542056 0.271028 0.962572i \(-0.412636\pi\)
0.271028 + 0.962572i \(0.412636\pi\)
\(380\) 0 0
\(381\) −2889.15 −0.388493
\(382\) 0 0
\(383\) 6880.48 6880.48i 0.917954 0.917954i −0.0789268 0.996880i \(-0.525149\pi\)
0.996880 + 0.0789268i \(0.0251494\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4198.60 + 4198.60i 0.551491 + 0.551491i
\(388\) 0 0
\(389\) 1069.05i 0.139340i 0.997570 + 0.0696700i \(0.0221946\pi\)
−0.997570 + 0.0696700i \(0.977805\pi\)
\(390\) 0 0
\(391\) 5796.25i 0.749691i
\(392\) 0 0
\(393\) 3006.79 + 3006.79i 0.385935 + 0.385935i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3539.68 + 3539.68i −0.447485 + 0.447485i −0.894517 0.447033i \(-0.852481\pi\)
0.447033 + 0.894517i \(0.352481\pi\)
\(398\) 0 0
\(399\) −141.740 −0.0177842
\(400\) 0 0
\(401\) −8202.74 −1.02151 −0.510755 0.859727i \(-0.670634\pi\)
−0.510755 + 0.859727i \(0.670634\pi\)
\(402\) 0 0
\(403\) −462.076 + 462.076i −0.0571158 + 0.0571158i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2319.27 2319.27i −0.282462 0.282462i
\(408\) 0 0
\(409\) 4312.89i 0.521414i −0.965418 0.260707i \(-0.916044\pi\)
0.965418 0.260707i \(-0.0839557\pi\)
\(410\) 0 0
\(411\) 224.172i 0.0269041i
\(412\) 0 0
\(413\) −55.5659 55.5659i −0.00662039 0.00662039i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1853.17 1853.17i 0.217626 0.217626i
\(418\) 0 0
\(419\) −15220.7 −1.77465 −0.887326 0.461142i \(-0.847440\pi\)
−0.887326 + 0.461142i \(0.847440\pi\)
\(420\) 0 0
\(421\) −135.795 −0.0157203 −0.00786014 0.999969i \(-0.502502\pi\)
−0.00786014 + 0.999969i \(0.502502\pi\)
\(422\) 0 0
\(423\) −6244.79 + 6244.79i −0.717806 + 0.717806i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 283.342 + 283.342i 0.0321121 + 0.0321121i
\(428\) 0 0
\(429\) 179.526i 0.0202042i
\(430\) 0 0
\(431\) 9197.09i 1.02786i −0.857832 0.513931i \(-0.828189\pi\)
0.857832 0.513931i \(-0.171811\pi\)
\(432\) 0 0
\(433\) 373.697 + 373.697i 0.0414751 + 0.0414751i 0.727540 0.686065i \(-0.240663\pi\)
−0.686065 + 0.727540i \(0.740663\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2974.83 2974.83i 0.325642 0.325642i
\(438\) 0 0
\(439\) 11961.1 1.30039 0.650194 0.759769i \(-0.274688\pi\)
0.650194 + 0.759769i \(0.274688\pi\)
\(440\) 0 0
\(441\) 5463.22 0.589916
\(442\) 0 0
\(443\) 7605.32 7605.32i 0.815665 0.815665i −0.169811 0.985477i \(-0.554316\pi\)
0.985477 + 0.169811i \(0.0543158\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5218.44 + 5218.44i 0.552178 + 0.552178i
\(448\) 0 0
\(449\) 2607.05i 0.274019i 0.990570 + 0.137009i \(0.0437490\pi\)
−0.990570 + 0.137009i \(0.956251\pi\)
\(450\) 0 0
\(451\) 6341.81i 0.662138i
\(452\) 0 0
\(453\) 5093.02 + 5093.02i 0.528236 + 0.528236i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7349.78 + 7349.78i −0.752315 + 0.752315i −0.974911 0.222596i \(-0.928547\pi\)
0.222596 + 0.974911i \(0.428547\pi\)
\(458\) 0 0
\(459\) 12920.5 1.31390
\(460\) 0 0
\(461\) 11169.1 1.12841 0.564207 0.825633i \(-0.309182\pi\)
0.564207 + 0.825633i \(0.309182\pi\)
\(462\) 0 0
\(463\) −8617.79 + 8617.79i −0.865017 + 0.865017i −0.991916 0.126899i \(-0.959498\pi\)
0.126899 + 0.991916i \(0.459498\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5057.64 5057.64i −0.501155 0.501155i 0.410641 0.911797i \(-0.365305\pi\)
−0.911797 + 0.410641i \(0.865305\pi\)
\(468\) 0 0
\(469\) 619.211i 0.0609649i
\(470\) 0 0
\(471\) 11249.5i 1.10053i
\(472\) 0 0
\(473\) −6076.17 6076.17i −0.590661 0.590661i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4232.49 4232.49i 0.406274 0.406274i
\(478\) 0 0
\(479\) −12864.4 −1.22711 −0.613557 0.789650i \(-0.710262\pi\)
−0.613557 + 0.789650i \(0.710262\pi\)
\(480\) 0 0
\(481\) −332.532 −0.0315222
\(482\) 0 0
\(483\) −97.7405 + 97.7405i −0.00920776 + 0.00920776i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8533.44 8533.44i −0.794019 0.794019i 0.188126 0.982145i \(-0.439759\pi\)
−0.982145 + 0.188126i \(0.939759\pi\)
\(488\) 0 0
\(489\) 6140.25i 0.567836i
\(490\) 0 0
\(491\) 6157.29i 0.565936i 0.959129 + 0.282968i \(0.0913191\pi\)
−0.959129 + 0.282968i \(0.908681\pi\)
\(492\) 0 0
\(493\) 3829.14 + 3829.14i 0.349809 + 0.349809i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −380.788 + 380.788i −0.0343676 + 0.0343676i
\(498\) 0 0
\(499\) 7040.63 0.631627 0.315814 0.948821i \(-0.397723\pi\)
0.315814 + 0.948821i \(0.397723\pi\)
\(500\) 0 0
\(501\) −10113.3 −0.901854
\(502\) 0 0
\(503\) 1716.19 1716.19i 0.152129 0.152129i −0.626939 0.779068i \(-0.715692\pi\)
0.779068 + 0.626939i \(0.215692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5151.87 5151.87i −0.451287 0.451287i
\(508\) 0 0
\(509\) 7212.20i 0.628046i 0.949415 + 0.314023i \(0.101677\pi\)
−0.949415 + 0.314023i \(0.898323\pi\)
\(510\) 0 0
\(511\) 101.581i 0.00879388i
\(512\) 0 0
\(513\) 6631.25 + 6631.25i 0.570715 + 0.570715i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9037.39 9037.39i 0.768789 0.768789i
\(518\) 0 0
\(519\) −6087.03 −0.514818
\(520\) 0 0
\(521\) 17759.5 1.49339 0.746697 0.665164i \(-0.231638\pi\)
0.746697 + 0.665164i \(0.231638\pi\)
\(522\) 0 0
\(523\) −11070.1 + 11070.1i −0.925550 + 0.925550i −0.997414 0.0718644i \(-0.977105\pi\)
0.0718644 + 0.997414i \(0.477105\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17870.8 17870.8i −1.47716 1.47716i
\(528\) 0 0
\(529\) 8064.26i 0.662797i
\(530\) 0 0
\(531\) 1930.60i 0.157780i
\(532\) 0 0
\(533\) 454.638 + 454.638i 0.0369466 + 0.0369466i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8511.16 + 8511.16i −0.683955 + 0.683955i
\(538\) 0 0
\(539\) −7906.31 −0.631816
\(540\) 0 0
\(541\) 17452.4 1.38695 0.693473 0.720482i \(-0.256080\pi\)
0.693473 + 0.720482i \(0.256080\pi\)
\(542\) 0 0
\(543\) −2217.19 + 2217.19i −0.175228 + 0.175228i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1469.79 1469.79i −0.114888 0.114888i 0.647326 0.762213i \(-0.275887\pi\)
−0.762213 + 0.647326i \(0.775887\pi\)
\(548\) 0 0
\(549\) 9844.53i 0.765309i
\(550\) 0 0
\(551\) 3930.49i 0.303892i
\(552\) 0 0
\(553\) 28.8009 + 28.8009i 0.00221472 + 0.00221472i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18132.6 + 18132.6i −1.37936 + 1.37936i −0.533668 + 0.845694i \(0.679187\pi\)
−0.845694 + 0.533668i \(0.820813\pi\)
\(558\) 0 0
\(559\) −871.188 −0.0659165
\(560\) 0 0
\(561\) −6943.16 −0.522532
\(562\) 0 0
\(563\) 5041.11 5041.11i 0.377367 0.377367i −0.492784 0.870151i \(-0.664021\pi\)
0.870151 + 0.492784i \(0.164021\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −20.2436 20.2436i −0.00149939 0.00149939i
\(568\) 0 0
\(569\) 21162.1i 1.55916i 0.626306 + 0.779578i \(0.284566\pi\)
−0.626306 + 0.779578i \(0.715434\pi\)
\(570\) 0 0
\(571\) 23479.4i 1.72081i 0.509613 + 0.860404i \(0.329789\pi\)
−0.509613 + 0.860404i \(0.670211\pi\)
\(572\) 0 0
\(573\) 9773.22 + 9773.22i 0.712534 + 0.712534i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2307.52 2307.52i 0.166487 0.166487i −0.618946 0.785433i \(-0.712440\pi\)
0.785433 + 0.618946i \(0.212440\pi\)
\(578\) 0 0
\(579\) 12815.1 0.919826
\(580\) 0 0
\(581\) −601.640 −0.0429608
\(582\) 0 0
\(583\) −6125.22 + 6125.22i −0.435130 + 0.435130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10405.2 10405.2i −0.731631 0.731631i 0.239312 0.970943i \(-0.423078\pi\)
−0.970943 + 0.239312i \(0.923078\pi\)
\(588\) 0 0
\(589\) 18343.8i 1.28326i
\(590\) 0 0
\(591\) 14845.9i 1.03330i
\(592\) 0 0
\(593\) −13455.2 13455.2i −0.931771 0.931771i 0.0660453 0.997817i \(-0.478962\pi\)
−0.997817 + 0.0660453i \(0.978962\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4720.78 4720.78i 0.323632 0.323632i
\(598\) 0 0
\(599\) −4714.31 −0.321572 −0.160786 0.986989i \(-0.551403\pi\)
−0.160786 + 0.986989i \(0.551403\pi\)
\(600\) 0 0
\(601\) 16938.8 1.14967 0.574833 0.818271i \(-0.305067\pi\)
0.574833 + 0.818271i \(0.305067\pi\)
\(602\) 0 0
\(603\) −10757.1 + 10757.1i −0.726469 + 0.726469i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2394.36 + 2394.36i 0.160106 + 0.160106i 0.782613 0.622508i \(-0.213886\pi\)
−0.622508 + 0.782613i \(0.713886\pi\)
\(608\) 0 0
\(609\) 129.139i 0.00859275i
\(610\) 0 0
\(611\) 1295.76i 0.0857952i
\(612\) 0 0
\(613\) 12943.8 + 12943.8i 0.852845 + 0.852845i 0.990483 0.137637i \(-0.0439509\pi\)
−0.137637 + 0.990483i \(0.543951\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16224.7 + 16224.7i −1.05864 + 1.05864i −0.0604703 + 0.998170i \(0.519260\pi\)
−0.998170 + 0.0604703i \(0.980740\pi\)
\(618\) 0 0
\(619\) −18113.5 −1.17616 −0.588081 0.808802i \(-0.700116\pi\)
−0.588081 + 0.808802i \(0.700116\pi\)
\(620\) 0 0
\(621\) 9145.49 0.590976
\(622\) 0 0
\(623\) −42.2274 + 42.2274i −0.00271558 + 0.00271558i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3563.46 3563.46i −0.226971 0.226971i
\(628\) 0 0
\(629\) 12860.7i 0.815243i
\(630\) 0 0
\(631\) 245.976i 0.0155185i 0.999970 + 0.00775923i \(0.00246987\pi\)
−0.999970 + 0.00775923i \(0.997530\pi\)
\(632\) 0 0
\(633\) 3966.47 + 3966.47i 0.249057 + 0.249057i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −566.795 + 566.795i −0.0352547 + 0.0352547i
\(638\) 0 0
\(639\) 13230.2 0.819062
\(640\) 0 0
\(641\) −23632.2 −1.45619 −0.728093 0.685478i \(-0.759593\pi\)
−0.728093 + 0.685478i \(0.759593\pi\)
\(642\) 0 0
\(643\) −12444.0 + 12444.0i −0.763207 + 0.763207i −0.976901 0.213694i \(-0.931451\pi\)
0.213694 + 0.976901i \(0.431451\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6170.29 6170.29i −0.374929 0.374929i 0.494340 0.869269i \(-0.335410\pi\)
−0.869269 + 0.494340i \(0.835410\pi\)
\(648\) 0 0
\(649\) 2793.95i 0.168986i
\(650\) 0 0
\(651\) 602.699i 0.0362852i
\(652\) 0 0
\(653\) 3951.31 + 3951.31i 0.236794 + 0.236794i 0.815521 0.578727i \(-0.196450\pi\)
−0.578727 + 0.815521i \(0.696450\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1764.68 + 1764.68i −0.104790 + 0.104790i
\(658\) 0 0
\(659\) −21537.2 −1.27310 −0.636549 0.771236i \(-0.719639\pi\)
−0.636549 + 0.771236i \(0.719639\pi\)
\(660\) 0 0
\(661\) −11082.9 −0.652156 −0.326078 0.945343i \(-0.605727\pi\)
−0.326078 + 0.945343i \(0.605727\pi\)
\(662\) 0 0
\(663\) −497.747 + 497.747i −0.0291567 + 0.0291567i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2710.37 + 2710.37i 0.157340 + 0.157340i
\(668\) 0 0
\(669\) 4695.56i 0.271361i
\(670\) 0 0
\(671\) 14246.9i 0.819665i
\(672\) 0 0
\(673\) −16642.5 16642.5i −0.953229 0.953229i 0.0457251 0.998954i \(-0.485440\pi\)
−0.998954 + 0.0457251i \(0.985440\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8193.46 8193.46i 0.465141 0.465141i −0.435195 0.900336i \(-0.643321\pi\)
0.900336 + 0.435195i \(0.143321\pi\)
\(678\) 0 0
\(679\) −567.748 −0.0320886
\(680\) 0 0
\(681\) −7365.29 −0.414447
\(682\) 0 0
\(683\) 13989.6 13989.6i 0.783742 0.783742i −0.196718 0.980460i \(-0.563028\pi\)
0.980460 + 0.196718i \(0.0630284\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6349.42 + 6349.42i 0.352614 + 0.352614i
\(688\) 0 0
\(689\) 878.220i 0.0485596i
\(690\) 0 0
\(691\) 509.424i 0.0280454i 0.999902 + 0.0140227i \(0.00446372\pi\)
−0.999902 + 0.0140227i \(0.995536\pi\)
\(692\) 0 0
\(693\) −168.929 168.929i −0.00925988 0.00925988i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17583.1 + 17583.1i −0.955533 + 0.955533i
\(698\) 0 0
\(699\) 12556.1 0.679421
\(700\) 0 0
\(701\) 23230.7 1.25166 0.625828 0.779961i \(-0.284761\pi\)
0.625828 + 0.779961i \(0.284761\pi\)
\(702\) 0 0
\(703\) 6600.53 6600.53i 0.354116 0.354116i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 112.984 + 112.984i 0.00601020 + 0.00601020i
\(708\) 0 0
\(709\) 13084.4i 0.693083i −0.938035 0.346542i \(-0.887356\pi\)
0.938035 0.346542i \(-0.112644\pi\)
\(710\) 0 0
\(711\) 1000.67i 0.0527820i
\(712\) 0 0
\(713\) −12649.4 12649.4i −0.664410 0.664410i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4200.46 + 4200.46i −0.218785 + 0.218785i
\(718\) 0 0
\(719\) −7819.19 −0.405572 −0.202786 0.979223i \(-0.565000\pi\)
−0.202786 + 0.979223i \(0.565000\pi\)
\(720\) 0 0
\(721\) 161.367 0.00833510
\(722\) 0 0
\(723\) 1236.03 1236.03i 0.0635803 0.0635803i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9135.95 + 9135.95i 0.466071 + 0.466071i 0.900639 0.434568i \(-0.143099\pi\)
−0.434568 + 0.900639i \(0.643099\pi\)
\(728\) 0 0
\(729\) 13519.8i 0.686876i
\(730\) 0 0
\(731\) 33693.1i 1.70477i
\(732\) 0 0
\(733\) 24476.0 + 24476.0i 1.23334 + 1.23334i 0.962672 + 0.270671i \(0.0872454\pi\)
0.270671 + 0.962672i \(0.412755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15567.5 15567.5i 0.778068 0.778068i
\(738\) 0 0
\(739\) 18652.1 0.928456 0.464228 0.885716i \(-0.346332\pi\)
0.464228 + 0.885716i \(0.346332\pi\)
\(740\) 0 0
\(741\) −510.922 −0.0253295
\(742\) 0 0
\(743\) 9000.76 9000.76i 0.444422 0.444422i −0.449073 0.893495i \(-0.648246\pi\)
0.893495 + 0.449073i \(0.148246\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10451.8 + 10451.8i 0.511929 + 0.511929i
\(748\) 0 0
\(749\) 409.845i 0.0199939i
\(750\) 0 0
\(751\) 14742.3i 0.716317i −0.933661 0.358158i \(-0.883405\pi\)
0.933661 0.358158i \(-0.116595\pi\)
\(752\) 0 0
\(753\) −8358.79 8358.79i −0.404530 0.404530i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25706.4 25706.4i 1.23423 1.23423i 0.271911 0.962322i \(-0.412344\pi\)
0.962322 0.271911i \(-0.0876557\pi\)
\(758\) 0 0
\(759\) −4914.55 −0.235029
\(760\) 0 0
\(761\) −15546.9 −0.740571 −0.370285 0.928918i \(-0.620740\pi\)
−0.370285 + 0.928918i \(0.620740\pi\)
\(762\) 0 0
\(763\) 699.428 699.428i 0.0331861 0.0331861i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −200.295 200.295i −0.00942925 0.00942925i
\(768\) 0 0
\(769\) 12699.1i 0.595500i 0.954644 + 0.297750i \(0.0962362\pi\)
−0.954644 + 0.297750i \(0.903764\pi\)
\(770\) 0 0
\(771\) 8345.90i 0.389845i
\(772\) 0 0
\(773\) −6015.01 6015.01i −0.279877 0.279877i 0.553183 0.833060i \(-0.313413\pi\)
−0.833060 + 0.553183i \(0.813413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −216.866 + 216.866i −0.0100129 + 0.0100129i
\(778\) 0 0
\(779\) −18048.5 −0.830107
\(780\) 0 0
\(781\) −19146.7 −0.877237
\(782\) 0 0
\(783\) −6041.72 + 6041.72i −0.275752 + 0.275752i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3296.03 + 3296.03i 0.149290 + 0.149290i 0.777801 0.628511i \(-0.216335\pi\)
−0.628511 + 0.777801i \(0.716335\pi\)
\(788\) 0 0
\(789\) 27166.3i 1.22579i
\(790\) 0 0
\(791\) 817.754i 0.0367585i
\(792\) 0 0
\(793\) 1021.34 + 1021.34i 0.0457365 + 0.0457365i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2001.35 2001.35i 0.0889480 0.0889480i −0.661233 0.750181i \(-0.729966\pi\)
0.750181 + 0.661233i \(0.229966\pi\)
\(798\) 0 0
\(799\) 50113.5 2.21888
\(800\) 0 0
\(801\) 1467.17 0.0647188
\(802\) 0 0
\(803\) 2553.83 2553.83i 0.112232 0.112232i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18684.3 + 18684.3i 0.815016 + 0.815016i
\(808\) 0 0
\(809\) 36567.3i 1.58917i 0.607152 + 0.794586i \(0.292312\pi\)
−0.607152 + 0.794586i \(0.707688\pi\)
\(810\) 0 0
\(811\) 28119.3i 1.21751i −0.793357 0.608756i \(-0.791669\pi\)
0.793357 0.608756i \(-0.208331\pi\)
\(812\) 0 0
\(813\) 2345.24 + 2345.24i 0.101170 + 0.101170i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 17292.5 17292.5i 0.740498 0.740498i
\(818\) 0 0
\(819\) −24.2207 −0.00103338
\(820\) 0 0
\(821\) −7379.99 −0.313719 −0.156860 0.987621i \(-0.550137\pi\)
−0.156860 + 0.987621i \(0.550137\pi\)
\(822\) 0 0
\(823\) 18103.4 18103.4i 0.766761 0.766761i −0.210774 0.977535i \(-0.567598\pi\)
0.977535 + 0.210774i \(0.0675984\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17442.7 + 17442.7i 0.733423 + 0.733423i 0.971296 0.237873i \(-0.0764503\pi\)
−0.237873 + 0.971296i \(0.576450\pi\)
\(828\) 0 0
\(829\) 9874.48i 0.413697i −0.978373 0.206848i \(-0.933679\pi\)
0.978373 0.206848i \(-0.0663207\pi\)
\(830\) 0 0
\(831\) 17277.8i 0.721252i
\(832\) 0 0
\(833\) −21920.7 21920.7i −0.911775 0.911775i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 28197.0 28197.0i 1.16443 1.16443i
\(838\) 0 0
\(839\) 14931.1 0.614398 0.307199 0.951645i \(-0.400608\pi\)
0.307199 + 0.951645i \(0.400608\pi\)
\(840\) 0 0
\(841\) 20807.9 0.853169
\(842\) 0 0
\(843\) 259.821 259.821i 0.0106153 0.0106153i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −366.444 366.444i −0.0148656 0.0148656i
\(848\) 0 0
\(849\) 1378.43i 0.0557216i
\(850\) 0 0
\(851\) 9103.13i 0.366688i
\(852\) 0 0
\(853\) −14181.4 14181.4i −0.569241 0.569241i 0.362675 0.931916i \(-0.381864\pi\)
−0.931916 + 0.362675i \(0.881864\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5552.32 + 5552.32i −0.221311 + 0.221311i −0.809050 0.587739i \(-0.800018\pi\)
0.587739 + 0.809050i \(0.300018\pi\)
\(858\) 0 0
\(859\) −1324.77 −0.0526199 −0.0263100 0.999654i \(-0.508376\pi\)
−0.0263100 + 0.999654i \(0.508376\pi\)
\(860\) 0 0
\(861\) 592.997 0.0234719
\(862\) 0 0
\(863\) 30628.9 30628.9i 1.20814 1.20814i 0.236505 0.971630i \(-0.423998\pi\)
0.971630 0.236505i \(-0.0760021\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −7700.79 7700.79i −0.301652 0.301652i
\(868\) 0 0
\(869\) 1448.16i 0.0565309i
\(870\) 0 0
\(871\) 2232.03i 0.0868307i
\(872\) 0 0
\(873\) 9863.02 + 9863.02i 0.382374 + 0.382374i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3525.59 + 3525.59i −0.135748 + 0.135748i −0.771716 0.635968i \(-0.780601\pi\)
0.635968 + 0.771716i \(0.280601\pi\)
\(878\) 0 0
\(879\) −27467.0 −1.05397
\(880\) 0 0
\(881\) −39472.2 −1.50948 −0.754740 0.656023i \(-0.772237\pi\)
−0.754740 + 0.656023i \(0.772237\pi\)
\(882\) 0 0
\(883\) 1438.08 1438.08i 0.0548079 0.0548079i −0.679172 0.733980i \(-0.737661\pi\)
0.733980 + 0.679172i \(0.237661\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18472.7 + 18472.7i 0.699272 + 0.699272i 0.964253 0.264982i \(-0.0853659\pi\)
−0.264982 + 0.964253i \(0.585366\pi\)
\(888\) 0 0
\(889\) 564.100i 0.0212816i
\(890\) 0 0
\(891\) 1017.88i 0.0382720i
\(892\) 0 0
\(893\) 25719.9 + 25719.9i 0.963813 + 0.963813i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −352.319 + 352.319i −0.0131144 + 0.0131144i
\(898\) 0 0
\(899\) 16713.0 0.620033
\(900\) 0 0
\(901\) −33965.1 −1.25587
\(902\) 0 0
\(903\) −568.158 + 568.158i −0.0209381 + 0.0209381i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 21841.3 + 21841.3i 0.799592 + 0.799592i 0.983031 0.183439i \(-0.0587231\pi\)
−0.183439 + 0.983031i \(0.558723\pi\)
\(908\) 0 0
\(909\) 3925.56i 0.143237i
\(910\) 0 0
\(911\) 45195.1i 1.64367i −0.569727 0.821834i \(-0.692951\pi\)
0.569727 0.821834i \(-0.307049\pi\)
\(912\) 0 0
\(913\) −15125.7 15125.7i −0.548289 0.548289i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 587.068 587.068i 0.0211414 0.0211414i
\(918\) 0 0
\(919\) −35372.3 −1.26967 −0.634834 0.772648i \(-0.718932\pi\)
−0.634834 + 0.772648i \(0.718932\pi\)
\(920\) 0 0
\(921\) 31081.8 1.11203
\(922\) 0 0
\(923\) −1372.60 + 1372.60i −0.0489489 + 0.0489489i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2803.29 2803.29i −0.0993227 0.0993227i
\(928\) 0 0
\(929\) 8353.38i 0.295011i −0.989061 0.147506i \(-0.952876\pi\)
0.989061 0.147506i \(-0.0471245\pi\)
\(930\) 0 0
\(931\) 22500.9i 0.792093i
\(932\) 0 0
\(933\) −18995.6 18995.6i −0.666548 0.666548i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −24599.3 + 24599.3i −0.857657 + 0.857657i −0.991062 0.133405i \(-0.957409\pi\)
0.133405 + 0.991062i \(0.457409\pi\)
\(938\) 0 0
\(939\) 24894.6 0.865181
\(940\) 0 0
\(941\) 32772.2 1.13533 0.567663 0.823261i \(-0.307848\pi\)
0.567663 + 0.823261i \(0.307848\pi\)
\(942\) 0 0
\(943\) −12445.8 + 12445.8i −0.429788 + 0.429788i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 584.174 + 584.174i 0.0200455 + 0.0200455i 0.717059 0.697013i \(-0.245488\pi\)
−0.697013 + 0.717059i \(0.745488\pi\)
\(948\) 0 0
\(949\) 366.162i 0.0125249i
\(950\) 0 0
\(951\) 12279.1i 0.418694i
\(952\) 0 0
\(953\) 4578.37 + 4578.37i 0.155622 + 0.155622i 0.780624 0.625001i \(-0.214902\pi\)
−0.625001 + 0.780624i \(0.714902\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3246.67 3246.67i 0.109666 0.109666i
\(958\) 0 0
\(959\) 43.7690 0.00147380
\(960\) 0 0
\(961\) −48209.4 −1.61825
\(962\) 0 0
\(963\) 7119.90 7119.90i 0.238251 0.238251i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 11282.8 + 11282.8i 0.375214 + 0.375214i 0.869372 0.494158i \(-0.164524\pi\)
−0.494158 + 0.869372i \(0.664524\pi\)
\(968\) 0 0
\(969\) 19759.9i 0.655086i
\(970\) 0 0
\(971\) 56918.3i 1.88115i 0.339588 + 0.940574i \(0.389712\pi\)
−0.339588 + 0.940574i \(0.610288\pi\)
\(972\) 0 0
\(973\) −361.827 361.827i −0.0119215 0.0119215i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11582.8 11582.8i 0.379291 0.379291i −0.491555 0.870846i \(-0.663571\pi\)
0.870846 + 0.491555i \(0.163571\pi\)
\(978\) 0 0
\(979\) −2123.27 −0.0693155
\(980\) 0 0
\(981\) −24301.2 −0.790905
\(982\) 0 0
\(983\) −9467.95 + 9467.95i −0.307203 + 0.307203i −0.843824 0.536621i \(-0.819701\pi\)
0.536621 + 0.843824i \(0.319701\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −845.049 845.049i −0.0272525 0.0272525i
\(988\) 0 0
\(989\) 23848.9i 0.766786i
\(990\) 0 0
\(991\) 48557.7i 1.55649i 0.627958 + 0.778247i \(0.283891\pi\)
−0.627958 + 0.778247i \(0.716109\pi\)
\(992\) 0 0
\(993\) −15453.0 15453.0i −0.493845 0.493845i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12396.0 12396.0i 0.393766 0.393766i −0.482262 0.876027i \(-0.660185\pi\)
0.876027 + 0.482262i \(0.160185\pi\)
\(998\) 0 0
\(999\) 20291.9 0.642651
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.n.g.143.5 yes 16
4.3 odd 2 inner 400.4.n.g.143.4 yes 16
5.2 odd 4 inner 400.4.n.g.207.3 yes 16
5.3 odd 4 inner 400.4.n.g.207.5 yes 16
5.4 even 2 inner 400.4.n.g.143.3 16
20.3 even 4 inner 400.4.n.g.207.4 yes 16
20.7 even 4 inner 400.4.n.g.207.6 yes 16
20.19 odd 2 inner 400.4.n.g.143.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.4.n.g.143.3 16 5.4 even 2 inner
400.4.n.g.143.4 yes 16 4.3 odd 2 inner
400.4.n.g.143.5 yes 16 1.1 even 1 trivial
400.4.n.g.143.6 yes 16 20.19 odd 2 inner
400.4.n.g.207.3 yes 16 5.2 odd 4 inner
400.4.n.g.207.4 yes 16 20.3 even 4 inner
400.4.n.g.207.5 yes 16 5.3 odd 4 inner
400.4.n.g.207.6 yes 16 20.7 even 4 inner