L(s) = 1 | − 90·9-s − 504·11-s − 440·19-s + 1.38e4·29-s − 1.35e4·31-s − 396·41-s − 3.00e4·49-s − 4.93e4·59-s − 1.13e4·61-s − 1.06e5·71-s + 1.03e5·79-s − 5.09e4·81-s + 1.99e4·89-s + 4.53e4·99-s − 2.18e5·101-s + 4.20e4·109-s − 1.31e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 7.28e5·169-s + ⋯ |
L(s) = 1 | − 0.370·9-s − 1.25·11-s − 0.279·19-s + 3.06·29-s − 2.52·31-s − 0.0367·41-s − 1.78·49-s − 1.84·59-s − 0.392·61-s − 2.51·71-s + 1.87·79-s − 0.862·81-s + 0.267·89-s + 0.465·99-s − 2.12·101-s + 0.338·109-s − 0.817·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s − 1.96·169-s + ⋯ |
Λ(s)=(=(160000s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(160000s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
160000
= 28⋅54
|
Sign: |
1
|
Analytic conductor: |
4115.67 |
Root analytic conductor: |
8.00958 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 160000, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+10p2T2+p10T4 |
| 7 | C22 | 1+30050T2+p10T4 |
| 11 | C2 | (1+252T+p5T2)2 |
| 13 | C22 | 1+728330T2+p10T4 |
| 17 | C22 | 1+2363810T2+p10T4 |
| 19 | C2 | (1+220T+p5T2)2 |
| 23 | C22 | 1+6946370T2+p10T4 |
| 29 | C2 | (1−6930T+p5T2)2 |
| 31 | C2 | (1+6752T+p5T2)2 |
| 37 | C22 | 1−56462470T2+p10T4 |
| 41 | C2 | (1+198T+p5T2)2 |
| 43 | C22 | 1+293842250T2+p10T4 |
| 47 | C22 | 1+347593490T2+p10T4 |
| 53 | C22 | 1+802472090T2+p10T4 |
| 59 | C2 | (1+24660T+p5T2)2 |
| 61 | C2 | (1+5698T+p5T2)2 |
| 67 | C22 | 1+795787610T2+p10T4 |
| 71 | C2 | (1+53352T+p5T2)2 |
| 73 | C22 | 1−883886830T2+p10T4 |
| 79 | C2 | (1−51920T+p5T2)2 |
| 83 | C22 | 1+4053674810T2+p10T4 |
| 89 | C2 | (1−9990T+p5T2)2 |
| 97 | C22 | 1+6923133890T2+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35818821787494541279214543999, −9.883887973933525492609155786275, −9.123310556186932417007813270567, −9.024465740310844799764981421558, −8.183758468446020490020128732260, −8.091083777066748536762112707685, −7.47399857116392210165083014456, −6.99548608481181573793524656547, −6.28388660677356580970282665761, −6.07930988280287988379847523773, −5.18607476741954390001413273813, −5.03330167465079049744988522040, −4.39028019376438201796000059209, −3.67262407964577863461859941301, −2.89022068347581338570184162864, −2.72879363999033578777438028677, −1.79199034474100036482378086367, −1.17575047012676916630540584565, 0, 0,
1.17575047012676916630540584565, 1.79199034474100036482378086367, 2.72879363999033578777438028677, 2.89022068347581338570184162864, 3.67262407964577863461859941301, 4.39028019376438201796000059209, 5.03330167465079049744988522040, 5.18607476741954390001413273813, 6.07930988280287988379847523773, 6.28388660677356580970282665761, 6.99548608481181573793524656547, 7.47399857116392210165083014456, 8.091083777066748536762112707685, 8.183758468446020490020128732260, 9.024465740310844799764981421558, 9.123310556186932417007813270567, 9.883887973933525492609155786275, 10.35818821787494541279214543999