Properties

Label 400.6.a.t
Level 400400
Weight 66
Character orbit 400.a
Self dual yes
Analytic conductor 64.15464.154
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 11
Dimension: 22
Coefficient field: Q(11)\Q(\sqrt{11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x211 x^{2} - 11 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 5)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=211\beta = 2\sqrt{11}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3βq39βq7+153q9252q1118βq13+104βq17220q191188q21367βq23270βq27+6930q296752q31756βq33+38556q99+O(q100) q + 3 \beta q^{3} - 9 \beta q^{7} + 153 q^{9} - 252 q^{11} - 18 \beta q^{13} + 104 \beta q^{17} - 220 q^{19} - 1188 q^{21} - 367 \beta q^{23} - 270 \beta q^{27} + 6930 q^{29} - 6752 q^{31} - 756 \beta q^{33} + \cdots - 38556 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+306q9504q11440q192376q21+13860q2913504q314752q39396q4126486q49+27456q5149320q5911396q6196888q69106704q71+77112q99+O(q100) 2 q + 306 q^{9} - 504 q^{11} - 440 q^{19} - 2376 q^{21} + 13860 q^{29} - 13504 q^{31} - 4752 q^{39} - 396 q^{41} - 26486 q^{49} + 27456 q^{51} - 49320 q^{59} - 11396 q^{61} - 96888 q^{69} - 106704 q^{71}+ \cdots - 77112 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.31662
3.31662
0 −19.8997 0 0 0 59.6992 0 153.000 0
1.2 0 19.8997 0 0 0 −59.6992 0 153.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.t 2
4.b odd 2 1 25.6.a.c 2
5.b even 2 1 inner 400.6.a.t 2
5.c odd 4 2 80.6.c.a 2
12.b even 2 1 225.6.a.n 2
15.e even 4 2 720.6.f.f 2
20.d odd 2 1 25.6.a.c 2
20.e even 4 2 5.6.b.a 2
40.i odd 4 2 320.6.c.g 2
40.k even 4 2 320.6.c.f 2
60.h even 2 1 225.6.a.n 2
60.l odd 4 2 45.6.b.b 2
140.j odd 4 2 245.6.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.6.b.a 2 20.e even 4 2
25.6.a.c 2 4.b odd 2 1
25.6.a.c 2 20.d odd 2 1
45.6.b.b 2 60.l odd 4 2
80.6.c.a 2 5.c odd 4 2
225.6.a.n 2 12.b even 2 1
225.6.a.n 2 60.h even 2 1
245.6.b.a 2 140.j odd 4 2
320.6.c.f 2 40.k even 4 2
320.6.c.g 2 40.i odd 4 2
400.6.a.t 2 1.a even 1 1 trivial
400.6.a.t 2 5.b even 2 1 inner
720.6.f.f 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32396 T_{3}^{2} - 396 acting on S6new(Γ0(400))S_{6}^{\mathrm{new}}(\Gamma_0(400)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2396 T^{2} - 396 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T23564 T^{2} - 3564 Copy content Toggle raw display
1111 (T+252)2 (T + 252)^{2} Copy content Toggle raw display
1313 T214256 T^{2} - 14256 Copy content Toggle raw display
1717 T2475904 T^{2} - 475904 Copy content Toggle raw display
1919 (T+220)2 (T + 220)^{2} Copy content Toggle raw display
2323 T25926316 T^{2} - 5926316 Copy content Toggle raw display
2929 (T6930)2 (T - 6930)^{2} Copy content Toggle raw display
3131 (T+6752)2 (T + 6752)^{2} Copy content Toggle raw display
3737 T2195150384 T^{2} - 195150384 Copy content Toggle raw display
4141 (T+198)2 (T + 198)^{2} Copy content Toggle raw display
4343 T2174636 T^{2} - 174636 Copy content Toggle raw display
4747 T2111096524 T^{2} - 111096524 Copy content Toggle raw display
5353 T233918896 T^{2} - 33918896 Copy content Toggle raw display
5959 (T+24660)2 (T + 24660)^{2} Copy content Toggle raw display
6161 (T+5698)2 (T + 5698)^{2} Copy content Toggle raw display
6767 T21904462604 T^{2} - 1904462604 Copy content Toggle raw display
7171 (T+53352)2 (T + 53352)^{2} Copy content Toggle raw display
7373 T25030030016 T^{2} - 5030030016 Copy content Toggle raw display
7979 (T51920)2 (T - 51920)^{2} Copy content Toggle raw display
8383 T23824406476 T^{2} - 3824406476 Copy content Toggle raw display
8989 (T9990)2 (T - 9990)^{2} Copy content Toggle raw display
9797 T210251546624 T^{2} - 10251546624 Copy content Toggle raw display
show more
show less