L(s) = 1 | + 342·9-s − 1.08e3·11-s + 1.67e3·19-s + 1.18e3·29-s − 8.51e3·31-s + 3.44e4·41-s + 2.58e4·49-s − 1.53e4·59-s − 6.94e4·61-s + 9.37e4·71-s − 1.53e5·79-s + 5.79e4·81-s − 5.95e4·89-s − 3.69e5·99-s + 2.25e4·101-s − 1.99e5·109-s + 5.52e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.67e5·169-s + ⋯ |
L(s) = 1 | + 1.40·9-s − 2.69·11-s + 1.06·19-s + 0.262·29-s − 1.59·31-s + 3.20·41-s + 1.53·49-s − 0.573·59-s − 2.39·61-s + 2.20·71-s − 2.77·79-s + 0.980·81-s − 0.796·89-s − 3.78·99-s + 0.220·101-s − 1.61·109-s + 3.43·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 1.52·169-s + ⋯ |
Λ(s)=(=(160000s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(160000s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
160000
= 28⋅54
|
Sign: |
1
|
Analytic conductor: |
4115.67 |
Root analytic conductor: |
8.00958 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 160000, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
1.796719137 |
L(21) |
≈ |
1.796719137 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−38p2T2+p10T4 |
| 7 | C22 | 1−25870T2+p10T4 |
| 11 | C2 | (1+540T+p5T2)2 |
| 13 | C22 | 1−567862T2+p10T4 |
| 17 | C22 | 1−2486878T2+p10T4 |
| 19 | C2 | (1−44pT+p5T2)2 |
| 23 | C22 | 1+3970130T2+p10T4 |
| 29 | C2 | (1−594T+p5T2)2 |
| 31 | C2 | (1+4256T+p5T2)2 |
| 37 | C22 | 1−138599110T2+p10T4 |
| 41 | C2 | (1−17226T+p5T2)2 |
| 43 | C22 | 1−147606886T2+p10T4 |
| 47 | C22 | 1−457010398T2+p10T4 |
| 53 | C22 | 1−456374950T2+p10T4 |
| 59 | C2 | (1+7668T+p5T2)2 |
| 61 | C2 | (1+34738T+p5T2)2 |
| 67 | C22 | 1−2224486870T2+p10T4 |
| 71 | C2 | (1−46872T+p5T2)2 |
| 73 | C22 | 1+418480658T2+p10T4 |
| 79 | C2 | (1+76912T+p5T2)2 |
| 83 | C22 | 1−3292624630T2+p10T4 |
| 89 | C2 | (1+29754T+p5T2)2 |
| 97 | C22 | 1−2193410110T2+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62475785789231264987025512885, −10.24305275977156155804027829045, −9.943082018858907392505444495749, −9.190305899352389207720420107799, −9.149797018212453839295726719301, −8.193925878898288663955390245380, −7.73481572594849816144466861808, −7.39088717216677277379639610084, −7.35170991948145031567044906432, −6.43654625103470047892974304877, −5.71146336289234190997462984024, −5.44232128880657713125432632030, −4.92557223846988447624193660257, −4.29457476514301219585111220462, −3.85275774078253835014305425309, −2.81058718284539763051121904714, −2.70282080497535337503635024705, −1.82828414998634702990851181103, −1.10498373110026333324638960889, −0.35694795194284638212864983865,
0.35694795194284638212864983865, 1.10498373110026333324638960889, 1.82828414998634702990851181103, 2.70282080497535337503635024705, 2.81058718284539763051121904714, 3.85275774078253835014305425309, 4.29457476514301219585111220462, 4.92557223846988447624193660257, 5.44232128880657713125432632030, 5.71146336289234190997462984024, 6.43654625103470047892974304877, 7.35170991948145031567044906432, 7.39088717216677277379639610084, 7.73481572594849816144466861808, 8.193925878898288663955390245380, 9.149797018212453839295726719301, 9.190305899352389207720420107799, 9.943082018858907392505444495749, 10.24305275977156155804027829045, 10.62475785789231264987025512885