Properties

Label 400.6.c.f
Level 400400
Weight 66
Character orbit 400.c
Analytic conductor 64.15464.154
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+6βq344βq7+99q9540q11209βq13297βq17+836q19+1056q21+2052βq23+2052βq27+594q294256q313240βq33+53460q99+O(q100) q + 6 \beta q^{3} - 44 \beta q^{7} + 99 q^{9} - 540 q^{11} - 209 \beta q^{13} - 297 \beta q^{17} + 836 q^{19} + 1056 q^{21} + 2052 \beta q^{23} + 2052 \beta q^{27} + 594 q^{29} - 4256 q^{31} - 3240 \beta q^{33} + \cdots - 53460 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+198q91080q11+1672q19+2112q21+1188q298512q31+10032q39+34452q41+18126q49+14256q5115336q5969476q6198496q69+93744q71+106920q99+O(q100) 2 q + 198 q^{9} - 1080 q^{11} + 1672 q^{19} + 2112 q^{21} + 1188 q^{29} - 8512 q^{31} + 10032 q^{39} + 34452 q^{41} + 18126 q^{49} + 14256 q^{51} - 15336 q^{59} - 69476 q^{61} - 98496 q^{69} + 93744 q^{71}+ \cdots - 106920 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 12.0000i 0 0 0 88.0000i 0 99.0000 0
49.2 0 12.0000i 0 0 0 88.0000i 0 99.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.c.f 2
4.b odd 2 1 100.6.c.b 2
5.b even 2 1 inner 400.6.c.f 2
5.c odd 4 1 16.6.a.b 1
5.c odd 4 1 400.6.a.d 1
12.b even 2 1 900.6.d.a 2
15.e even 4 1 144.6.a.c 1
20.d odd 2 1 100.6.c.b 2
20.e even 4 1 4.6.a.a 1
20.e even 4 1 100.6.a.b 1
35.f even 4 1 784.6.a.d 1
40.i odd 4 1 64.6.a.b 1
40.k even 4 1 64.6.a.f 1
60.h even 2 1 900.6.d.a 2
60.l odd 4 1 36.6.a.a 1
60.l odd 4 1 900.6.a.h 1
80.i odd 4 1 256.6.b.c 2
80.j even 4 1 256.6.b.g 2
80.s even 4 1 256.6.b.g 2
80.t odd 4 1 256.6.b.c 2
120.q odd 4 1 576.6.a.bc 1
120.w even 4 1 576.6.a.bd 1
140.j odd 4 1 196.6.a.e 1
140.w even 12 2 196.6.e.g 2
140.x odd 12 2 196.6.e.d 2
180.v odd 12 2 324.6.e.d 2
180.x even 12 2 324.6.e.a 2
220.i odd 4 1 484.6.a.a 1
260.l odd 4 1 676.6.d.a 2
260.p even 4 1 676.6.a.a 1
260.s odd 4 1 676.6.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.6.a.a 1 20.e even 4 1
16.6.a.b 1 5.c odd 4 1
36.6.a.a 1 60.l odd 4 1
64.6.a.b 1 40.i odd 4 1
64.6.a.f 1 40.k even 4 1
100.6.a.b 1 20.e even 4 1
100.6.c.b 2 4.b odd 2 1
100.6.c.b 2 20.d odd 2 1
144.6.a.c 1 15.e even 4 1
196.6.a.e 1 140.j odd 4 1
196.6.e.d 2 140.x odd 12 2
196.6.e.g 2 140.w even 12 2
256.6.b.c 2 80.i odd 4 1
256.6.b.c 2 80.t odd 4 1
256.6.b.g 2 80.j even 4 1
256.6.b.g 2 80.s even 4 1
324.6.e.a 2 180.x even 12 2
324.6.e.d 2 180.v odd 12 2
400.6.a.d 1 5.c odd 4 1
400.6.c.f 2 1.a even 1 1 trivial
400.6.c.f 2 5.b even 2 1 inner
484.6.a.a 1 220.i odd 4 1
576.6.a.bc 1 120.q odd 4 1
576.6.a.bd 1 120.w even 4 1
676.6.a.a 1 260.p even 4 1
676.6.d.a 2 260.l odd 4 1
676.6.d.a 2 260.s odd 4 1
784.6.a.d 1 35.f even 4 1
900.6.a.h 1 60.l odd 4 1
900.6.d.a 2 12.b even 2 1
900.6.d.a 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+144 T_{3}^{2} + 144 acting on S6new(400,[χ])S_{6}^{\mathrm{new}}(400, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+144 T^{2} + 144 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+7744 T^{2} + 7744 Copy content Toggle raw display
1111 (T+540)2 (T + 540)^{2} Copy content Toggle raw display
1313 T2+174724 T^{2} + 174724 Copy content Toggle raw display
1717 T2+352836 T^{2} + 352836 Copy content Toggle raw display
1919 (T836)2 (T - 836)^{2} Copy content Toggle raw display
2323 T2+16842816 T^{2} + 16842816 Copy content Toggle raw display
2929 (T594)2 (T - 594)^{2} Copy content Toggle raw display
3131 (T+4256)2 (T + 4256)^{2} Copy content Toggle raw display
3737 T2+88804 T^{2} + 88804 Copy content Toggle raw display
4141 (T17226)2 (T - 17226)^{2} Copy content Toggle raw display
4343 T2+146410000 T^{2} + 146410000 Copy content Toggle raw display
4747 T2+1679616 T^{2} + 1679616 Copy content Toggle raw display
5353 T2+380016036 T^{2} + 380016036 Copy content Toggle raw display
5959 (T+7668)2 (T + 7668)^{2} Copy content Toggle raw display
6161 (T+34738)2 (T + 34738)^{2} Copy content Toggle raw display
6767 T2+475763344 T^{2} + 475763344 Copy content Toggle raw display
7171 (T46872)2 (T - 46872)^{2} Copy content Toggle raw display
7373 T2+4564623844 T^{2} + 4564623844 Copy content Toggle raw display
7979 (T+76912)2 (T + 76912)^{2} Copy content Toggle raw display
8383 T2+4585456656 T^{2} + 4585456656 Copy content Toggle raw display
8989 (T+29754)2 (T + 29754)^{2} Copy content Toggle raw display
9797 T2+14981270404 T^{2} + 14981270404 Copy content Toggle raw display
show more
show less