Properties

Label 400.6.c
Level $400$
Weight $6$
Character orbit 400.c
Rep. character $\chi_{400}(49,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $16$
Sturm bound $360$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(360\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(400, [\chi])\).

Total New Old
Modular forms 318 46 272
Cusp forms 282 44 238
Eisenstein series 36 2 34

Trace form

\( 44 q - 3400 q^{9} - 724 q^{11} - 196 q^{19} - 2128 q^{21} - 12240 q^{29} + 12928 q^{31} - 10376 q^{39} - 8404 q^{41} - 85604 q^{49} - 115444 q^{51} + 77136 q^{59} + 2288 q^{61} + 43648 q^{69} + 25016 q^{71}+ \cdots + 244272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.6.c.a 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 10.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+13\beta q^{3}-11\beta q^{7}-433 q^{9}+768 q^{11}+\cdots\)
400.6.c.b 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 10.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+12\beta q^{3}+86\beta q^{7}-333 q^{9}-132 q^{11}+\cdots\)
400.6.c.c 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 20.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+11\beta q^{3}-109\beta q^{7}-241 q^{9}+\cdots\)
400.6.c.d 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 8.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+10\beta q^{3}+12\beta q^{7}-157 q^{9}-124 q^{11}+\cdots\)
400.6.c.e 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 40.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+9\beta q^{3}+121\beta q^{7}-81 q^{9}-656 q^{11}+\cdots\)
400.6.c.f 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 4.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6\beta q^{3}-44\beta q^{7}+99 q^{9}-540 q^{11}+\cdots\)
400.6.c.g 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 50.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+11 i q^{3}-142 i q^{7}+122 q^{9}+\cdots\)
400.6.c.h 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 40.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta q^{3}-54\beta q^{7}+179 q^{9}+604 q^{11}+\cdots\)
400.6.c.i 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 10.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{3}+59\beta q^{7}+207 q^{9}-192 q^{11}+\cdots\)
400.6.c.j 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 5.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{3}+96\beta q^{7}+227 q^{9}+148 q^{11}+\cdots\)
400.6.c.k 400.c 5.b $2$ $64.154$ \(\Q(\sqrt{-1}) \) None 40.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-31\beta q^{7}+239 q^{9}+144 q^{11}+\cdots\)
400.6.c.l 400.c 5.b $4$ $64.154$ \(\Q(i, \sqrt{129})\) None 40.6.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-3\beta _{1}+\beta _{2})q^{3}+(-13\beta _{1}-3\beta _{2}+\cdots)q^{7}+\cdots\)
400.6.c.m 400.c 5.b $4$ $64.154$ \(\Q(i, \sqrt{409})\) None 100.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+2\beta _{2})q^{3}+(-6\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\)
400.6.c.n 400.c 5.b $4$ $64.154$ \(\Q(i, \sqrt{241})\) None 25.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-2\beta _{2})q^{3}+(-2\beta _{1}+20\beta _{2})q^{7}+\cdots\)
400.6.c.o 400.c 5.b $4$ $64.154$ \(\Q(i, \sqrt{241})\) None 200.6.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-4\beta _{1}-\beta _{2})q^{3}+(-4\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
400.6.c.p 400.c 5.b $6$ $64.154$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 200.6.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+(-24\beta _{1}-\beta _{3}-\beta _{4})q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(400, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)