Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [576,6,Mod(1,576)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(576, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("576.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 576.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 4) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.6.a.bc | 1 | |
3.b | odd | 2 | 1 | 64.6.a.f | 1 | ||
4.b | odd | 2 | 1 | 576.6.a.bd | 1 | ||
8.b | even | 2 | 1 | 36.6.a.a | 1 | ||
8.d | odd | 2 | 1 | 144.6.a.c | 1 | ||
12.b | even | 2 | 1 | 64.6.a.b | 1 | ||
24.f | even | 2 | 1 | 16.6.a.b | 1 | ||
24.h | odd | 2 | 1 | 4.6.a.a | ✓ | 1 | |
40.f | even | 2 | 1 | 900.6.a.h | 1 | ||
40.i | odd | 4 | 2 | 900.6.d.a | 2 | ||
48.i | odd | 4 | 2 | 256.6.b.g | 2 | ||
48.k | even | 4 | 2 | 256.6.b.c | 2 | ||
72.j | odd | 6 | 2 | 324.6.e.a | 2 | ||
72.n | even | 6 | 2 | 324.6.e.d | 2 | ||
120.i | odd | 2 | 1 | 100.6.a.b | 1 | ||
120.m | even | 2 | 1 | 400.6.a.d | 1 | ||
120.q | odd | 4 | 2 | 400.6.c.f | 2 | ||
120.w | even | 4 | 2 | 100.6.c.b | 2 | ||
168.e | odd | 2 | 1 | 784.6.a.d | 1 | ||
168.i | even | 2 | 1 | 196.6.a.e | 1 | ||
168.s | odd | 6 | 2 | 196.6.e.g | 2 | ||
168.ba | even | 6 | 2 | 196.6.e.d | 2 | ||
264.m | even | 2 | 1 | 484.6.a.a | 1 | ||
312.b | odd | 2 | 1 | 676.6.a.a | 1 | ||
312.y | even | 4 | 2 | 676.6.d.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4.6.a.a | ✓ | 1 | 24.h | odd | 2 | 1 | |
16.6.a.b | 1 | 24.f | even | 2 | 1 | ||
36.6.a.a | 1 | 8.b | even | 2 | 1 | ||
64.6.a.b | 1 | 12.b | even | 2 | 1 | ||
64.6.a.f | 1 | 3.b | odd | 2 | 1 | ||
100.6.a.b | 1 | 120.i | odd | 2 | 1 | ||
100.6.c.b | 2 | 120.w | even | 4 | 2 | ||
144.6.a.c | 1 | 8.d | odd | 2 | 1 | ||
196.6.a.e | 1 | 168.i | even | 2 | 1 | ||
196.6.e.d | 2 | 168.ba | even | 6 | 2 | ||
196.6.e.g | 2 | 168.s | odd | 6 | 2 | ||
256.6.b.c | 2 | 48.k | even | 4 | 2 | ||
256.6.b.g | 2 | 48.i | odd | 4 | 2 | ||
324.6.e.a | 2 | 72.j | odd | 6 | 2 | ||
324.6.e.d | 2 | 72.n | even | 6 | 2 | ||
400.6.a.d | 1 | 120.m | even | 2 | 1 | ||
400.6.c.f | 2 | 120.q | odd | 4 | 2 | ||
484.6.a.a | 1 | 264.m | even | 2 | 1 | ||
576.6.a.bc | 1 | 1.a | even | 1 | 1 | trivial | |
576.6.a.bd | 1 | 4.b | odd | 2 | 1 | ||
676.6.a.a | 1 | 312.b | odd | 2 | 1 | ||
676.6.d.a | 2 | 312.y | even | 4 | 2 | ||
784.6.a.d | 1 | 168.e | odd | 2 | 1 | ||
900.6.a.h | 1 | 40.f | even | 2 | 1 | ||
900.6.d.a | 2 | 40.i | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|