Properties

Label 576.6.a.bc
Level 576576
Weight 66
Character orbit 576.a
Self dual yes
Analytic conductor 92.38192.381
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,6,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.381080212392.3810802123
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 4)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+54q588q7+540q11+418q13594q17836q19+4104q23209q25594q29+4256q314752q35+298q3717226q41+12100q43+1296q47+122398q97+O(q100) q + 54 q^{5} - 88 q^{7} + 540 q^{11} + 418 q^{13} - 594 q^{17} - 836 q^{19} + 4104 q^{23} - 209 q^{25} - 594 q^{29} + 4256 q^{31} - 4752 q^{35} + 298 q^{37} - 17226 q^{41} + 12100 q^{43} + 1296 q^{47}+ \cdots - 122398 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 54.0000 0 −88.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.6.a.bc 1
3.b odd 2 1 64.6.a.f 1
4.b odd 2 1 576.6.a.bd 1
8.b even 2 1 36.6.a.a 1
8.d odd 2 1 144.6.a.c 1
12.b even 2 1 64.6.a.b 1
24.f even 2 1 16.6.a.b 1
24.h odd 2 1 4.6.a.a 1
40.f even 2 1 900.6.a.h 1
40.i odd 4 2 900.6.d.a 2
48.i odd 4 2 256.6.b.g 2
48.k even 4 2 256.6.b.c 2
72.j odd 6 2 324.6.e.a 2
72.n even 6 2 324.6.e.d 2
120.i odd 2 1 100.6.a.b 1
120.m even 2 1 400.6.a.d 1
120.q odd 4 2 400.6.c.f 2
120.w even 4 2 100.6.c.b 2
168.e odd 2 1 784.6.a.d 1
168.i even 2 1 196.6.a.e 1
168.s odd 6 2 196.6.e.g 2
168.ba even 6 2 196.6.e.d 2
264.m even 2 1 484.6.a.a 1
312.b odd 2 1 676.6.a.a 1
312.y even 4 2 676.6.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.6.a.a 1 24.h odd 2 1
16.6.a.b 1 24.f even 2 1
36.6.a.a 1 8.b even 2 1
64.6.a.b 1 12.b even 2 1
64.6.a.f 1 3.b odd 2 1
100.6.a.b 1 120.i odd 2 1
100.6.c.b 2 120.w even 4 2
144.6.a.c 1 8.d odd 2 1
196.6.a.e 1 168.i even 2 1
196.6.e.d 2 168.ba even 6 2
196.6.e.g 2 168.s odd 6 2
256.6.b.c 2 48.k even 4 2
256.6.b.g 2 48.i odd 4 2
324.6.e.a 2 72.j odd 6 2
324.6.e.d 2 72.n even 6 2
400.6.a.d 1 120.m even 2 1
400.6.c.f 2 120.q odd 4 2
484.6.a.a 1 264.m even 2 1
576.6.a.bc 1 1.a even 1 1 trivial
576.6.a.bd 1 4.b odd 2 1
676.6.a.a 1 312.b odd 2 1
676.6.d.a 2 312.y even 4 2
784.6.a.d 1 168.e odd 2 1
900.6.a.h 1 40.f even 2 1
900.6.d.a 2 40.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(576))S_{6}^{\mathrm{new}}(\Gamma_0(576)):

T554 T_{5} - 54 Copy content Toggle raw display
T7+88 T_{7} + 88 Copy content Toggle raw display
T11540 T_{11} - 540 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T54 T - 54 Copy content Toggle raw display
77 T+88 T + 88 Copy content Toggle raw display
1111 T540 T - 540 Copy content Toggle raw display
1313 T418 T - 418 Copy content Toggle raw display
1717 T+594 T + 594 Copy content Toggle raw display
1919 T+836 T + 836 Copy content Toggle raw display
2323 T4104 T - 4104 Copy content Toggle raw display
2929 T+594 T + 594 Copy content Toggle raw display
3131 T4256 T - 4256 Copy content Toggle raw display
3737 T298 T - 298 Copy content Toggle raw display
4141 T+17226 T + 17226 Copy content Toggle raw display
4343 T12100 T - 12100 Copy content Toggle raw display
4747 T1296 T - 1296 Copy content Toggle raw display
5353 T19494 T - 19494 Copy content Toggle raw display
5959 T+7668 T + 7668 Copy content Toggle raw display
6161 T34738 T - 34738 Copy content Toggle raw display
6767 T+21812 T + 21812 Copy content Toggle raw display
7171 T46872 T - 46872 Copy content Toggle raw display
7373 T67562 T - 67562 Copy content Toggle raw display
7979 T+76912 T + 76912 Copy content Toggle raw display
8383 T67716 T - 67716 Copy content Toggle raw display
8989 T+29754 T + 29754 Copy content Toggle raw display
9797 T+122398 T + 122398 Copy content Toggle raw display
show more
show less