L(s) = 1 | + 458·9-s + 400·11-s − 1.68e3·19-s + 9.36e3·29-s + 1.00e4·31-s − 1.06e4·41-s + 6.52e4·49-s − 1.63e5·59-s − 9.38e4·61-s − 1.48e4·71-s − 2.16e5·79-s + 5.46e4·81-s − 1.41e5·89-s + 1.83e5·99-s − 3.02e5·101-s − 2.82e5·109-s − 3.31e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6.61e3·169-s + ⋯ |
L(s) = 1 | + 1.88·9-s + 0.996·11-s − 1.06·19-s + 2.06·29-s + 1.87·31-s − 0.991·41-s + 3.88·49-s − 6.11·59-s − 3.22·61-s − 0.350·71-s − 3.89·79-s + 0.925·81-s − 1.89·89-s + 1.87·99-s − 2.94·101-s − 2.28·109-s − 2.05·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.0178·169-s + ⋯ |
Λ(s)=(=((216⋅58)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((216⋅58)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅58
|
Sign: |
1
|
Analytic conductor: |
1.69387×107 |
Root analytic conductor: |
8.00958 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅58, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
1.107307668 |
L(21) |
≈ |
1.107307668 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | D4×C2 | 1−458T2+1915p4T4−458p10T6+p20T8 |
| 7 | D4×C2 | 1−1332p2T2+1629866758T4−1332p12T6+p20T8 |
| 11 | D4 | (1−200T+225821T2−200p5T3+p10T4)2 |
| 13 | D4×C2 | 1−6612T2+47343141238T4−6612p10T6+p20T8 |
| 17 | D4×C2 | 1−5517394T2+11637628825043T4−5517394p10T6+p20T8 |
| 19 | D4 | (1+840T+4289677T2+840p5T3+p10T4)2 |
| 23 | D4×C2 | 1−19211092T2+166300343917958T4−19211092p10T6+p20T8 |
| 29 | D4 | (1−4680T+1421346pT2−4680p5T3+p10T4)2 |
| 31 | D4 | (1−5008T+33327162T2−5008p5T3+p10T4)2 |
| 37 | D4×C2 | 1−86339436T2+2659590797035222T4−86339436p10T6+p20T8 |
| 41 | D4 | (1+5334T+27686155T2+5334p5T3+p10T4)2 |
| 43 | D4×C2 | 1−29960652T2+43433374484607958T4−29960652p10T6+p20T8 |
| 47 | C22 | (1−288752718T2+p10T4)2 |
| 53 | D4×C2 | 1−514633100T2+347542581493770198T4−514633100p10T6+p20T8 |
| 59 | D4 | (1+81776T+3059970646T2+81776p5T3+p10T4)2 |
| 61 | D4 | (1+46932T+2239379182T2+46932p5T3+p10T4)2 |
| 67 | D4×C2 | 1−2982943418T2+5751121538625041883T4−2982943418p10T6+p20T8 |
| 71 | D4 | (1+7448T+3593807902T2+7448p5T3+p10T4)2 |
| 73 | D4×C2 | 1−2368673842T2+9983110585747236243T4−2368673842p10T6+p20T8 |
| 79 | D4 | (1+108104T+6816153098T2+108104p5T3+p10T4)2 |
| 83 | D4×C2 | 1−8274508042T2+45513777799710942443T4−8274508042p10T6+p20T8 |
| 89 | D4 | (1+70990T+6345035107T2+70990p5T3+p10T4)2 |
| 97 | D4×C2 | 1−22699126076T2+24⋯42T4−22699126076p10T6+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.22171930189438933714770280347, −7.18149782651507435171991932914, −6.92056930323724152326141421754, −6.35190325457508689774859263014, −6.24870478256814141059083090402, −6.24655831961947912347772023758, −6.11243150780367246229444345206, −5.51126758930304394086993144781, −5.13284249925628783845851612813, −4.94753973206135619990763114506, −4.57507322350901849406156385268, −4.28639793002614092324151207971, −4.27634963470377505033110473711, −3.96797720615073122359533515122, −3.89774485908660560905560629565, −2.99789916525418945741066963265, −2.92925878728820146068957485401, −2.72809883092505504913273257748, −2.54182571481102836277657297841, −1.64551414249457844587245147104, −1.39210243294453318986926915077, −1.36512564553566985843762672332, −1.36185935200599537084277574108, −0.57078583167653498487124373135, −0.11960983469108833787289390937,
0.11960983469108833787289390937, 0.57078583167653498487124373135, 1.36185935200599537084277574108, 1.36512564553566985843762672332, 1.39210243294453318986926915077, 1.64551414249457844587245147104, 2.54182571481102836277657297841, 2.72809883092505504913273257748, 2.92925878728820146068957485401, 2.99789916525418945741066963265, 3.89774485908660560905560629565, 3.96797720615073122359533515122, 4.27634963470377505033110473711, 4.28639793002614092324151207971, 4.57507322350901849406156385268, 4.94753973206135619990763114506, 5.13284249925628783845851612813, 5.51126758930304394086993144781, 6.11243150780367246229444345206, 6.24655831961947912347772023758, 6.24870478256814141059083090402, 6.35190325457508689774859263014, 6.92056930323724152326141421754, 7.18149782651507435171991932914, 7.22171930189438933714770280347