Properties

Label 400.6.c.o
Level 400400
Weight 66
Character orbit 400.c
Analytic conductor 64.15464.154
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,241)\Q(i, \sqrt{241})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+121x2+3600 x^{4} + 121x^{2} + 3600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β24β1)q3+(2β24β1)q7+(8β314)q9+(21β3+100)q11+(52β2296β1)q13+(16β2139β1)q17++(1094β341888)q99+O(q100) q + ( - \beta_{2} - 4 \beta_1) q^{3} + ( - 2 \beta_{2} - 4 \beta_1) q^{7} + ( - 8 \beta_{3} - 14) q^{9} + (21 \beta_{3} + 100) q^{11} + ( - 52 \beta_{2} - 296 \beta_1) q^{13} + (16 \beta_{2} - 139 \beta_1) q^{17}+ \cdots + ( - 1094 \beta_{3} - 41888) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q56q9+400q111680q191992q21+9360q29+10016q3154864q3910668q41+63308q49+13200q51163552q5993864q61+110088q6914896q71+167552q99+O(q100) 4 q - 56 q^{9} + 400 q^{11} - 1680 q^{19} - 1992 q^{21} + 9360 q^{29} + 10016 q^{31} - 54864 q^{39} - 10668 q^{41} + 63308 q^{49} + 13200 q^{51} - 163552 q^{59} - 93864 q^{61} + 110088 q^{69} - 14896 q^{71}+ \cdots - 167552 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+121x2+3600 x^{4} + 121x^{2} + 3600 : Copy content Toggle raw display

β1\beta_{1}== (ν3+61ν)/60 ( \nu^{3} + 61\nu ) / 60 Copy content Toggle raw display
β2\beta_{2}== (ν3+181ν)/60 ( \nu^{3} + 181\nu ) / 60 Copy content Toggle raw display
β3\beta_{3}== 2ν2+121 2\nu^{2} + 121 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3121)/2 ( \beta_{3} - 121 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (61β2+181β1)/2 ( -61\beta_{2} + 181\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
7.26209i
8.26209i
8.26209i
7.26209i
0 19.5242i 0 0 0 35.0483i 0 −138.193 0
49.2 0 11.5242i 0 0 0 27.0483i 0 110.193 0
49.3 0 11.5242i 0 0 0 27.0483i 0 110.193 0
49.4 0 19.5242i 0 0 0 35.0483i 0 −138.193 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.c.o 4
4.b odd 2 1 200.6.c.f 4
5.b even 2 1 inner 400.6.c.o 4
5.c odd 4 1 400.6.a.r 2
5.c odd 4 1 400.6.a.u 2
20.d odd 2 1 200.6.c.f 4
20.e even 4 1 200.6.a.e 2
20.e even 4 1 200.6.a.f yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.6.a.e 2 20.e even 4 1
200.6.a.f yes 2 20.e even 4 1
200.6.c.f 4 4.b odd 2 1
200.6.c.f 4 20.d odd 2 1
400.6.a.r 2 5.c odd 4 1
400.6.a.u 2 5.c odd 4 1
400.6.c.o 4 1.a even 1 1 trivial
400.6.c.o 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+514T32+50625 T_{3}^{4} + 514T_{3}^{2} + 50625 acting on S6new(400,[χ])S_{6}^{\mathrm{new}}(400, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+514T2+50625 T^{4} + 514 T^{2} + 50625 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+1960T2+898704 T^{4} + 1960 T^{2} + 898704 Copy content Toggle raw display
1111 (T2200T96281)2 (T^{2} - 200 T - 96281)^{2} Copy content Toggle raw display
1313 T4++318150146304 T^{4} + \cdots + 318150146304 Copy content Toggle raw display
1717 T4++1795640625 T^{4} + \cdots + 1795640625 Copy content Toggle raw display
1919 (T2+840T662521)2 (T^{2} + 840 T - 662521)^{2} Copy content Toggle raw display
2323 T4++1855011312144 T^{4} + \cdots + 1855011312144 Copy content Toggle raw display
2929 (T24680T+196736)2 (T^{2} - 4680 T + 196736)^{2} Copy content Toggle raw display
3131 (T25008T23931140)2 (T^{2} - 5008 T - 23931140)^{2} Copy content Toggle raw display
3737 T4++302523267094416 T^{4} + \cdots + 302523267094416 Copy content Toggle raw display
4141 (T2+5334T204026247)2 (T^{2} + 5334 T - 204026247)^{2} Copy content Toggle raw display
4343 T4++77 ⁣ ⁣84 T^{4} + \cdots + 77\!\cdots\!84 Copy content Toggle raw display
4747 (T2+169937296)2 (T^{2} + 169937296)^{2} Copy content Toggle raw display
5353 T4++26 ⁣ ⁣96 T^{4} + \cdots + 26\!\cdots\!96 Copy content Toggle raw display
5959 (T2+81776T+1630122048)2 (T^{2} + 81776 T + 1630122048)^{2} Copy content Toggle raw display
6161 (T2+46932T+550186580)2 (T^{2} + 46932 T + 550186580)^{2} Copy content Toggle raw display
6767 T4++13 ⁣ ⁣29 T^{4} + \cdots + 13\!\cdots\!29 Copy content Toggle raw display
7171 (T2+7448T14650800)2 (T^{2} + 7448 T - 14650800)^{2} Copy content Toggle raw display
7373 T4++87 ⁣ ⁣29 T^{4} + \cdots + 87\!\cdots\!29 Copy content Toggle raw display
7979 (T2+108104T+662040300)2 (T^{2} + 108104 T + 662040300)^{2} Copy content Toggle raw display
8383 T4++11 ⁣ ⁣29 T^{4} + \cdots + 11\!\cdots\!29 Copy content Toggle raw display
8989 (T2+70990T4823083791)2 (T^{2} + 70990 T - 4823083791)^{2} Copy content Toggle raw display
9797 T4++12 ⁣ ⁣76 T^{4} + \cdots + 12\!\cdots\!76 Copy content Toggle raw display
show more
show less