Properties

Label 400.6.c.o
Level $400$
Weight $6$
Character orbit 400.c
Analytic conductor $64.154$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.1535279252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{241})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 121x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 4 \beta_1) q^{3} + ( - 2 \beta_{2} - 4 \beta_1) q^{7} + ( - 8 \beta_{3} - 14) q^{9} + (21 \beta_{3} + 100) q^{11} + ( - 52 \beta_{2} - 296 \beta_1) q^{13} + (16 \beta_{2} - 139 \beta_1) q^{17}+ \cdots + ( - 1094 \beta_{3} - 41888) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{9} + 400 q^{11} - 1680 q^{19} - 1992 q^{21} + 9360 q^{29} + 10016 q^{31} - 54864 q^{39} - 10668 q^{41} + 63308 q^{49} + 13200 q^{51} - 163552 q^{59} - 93864 q^{61} + 110088 q^{69} - 14896 q^{71}+ \cdots - 167552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 121x^{2} + 3600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 61\nu ) / 60 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 181\nu ) / 60 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 121 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 121 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -61\beta_{2} + 181\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
7.26209i
8.26209i
8.26209i
7.26209i
0 19.5242i 0 0 0 35.0483i 0 −138.193 0
49.2 0 11.5242i 0 0 0 27.0483i 0 110.193 0
49.3 0 11.5242i 0 0 0 27.0483i 0 110.193 0
49.4 0 19.5242i 0 0 0 35.0483i 0 −138.193 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.c.o 4
4.b odd 2 1 200.6.c.f 4
5.b even 2 1 inner 400.6.c.o 4
5.c odd 4 1 400.6.a.r 2
5.c odd 4 1 400.6.a.u 2
20.d odd 2 1 200.6.c.f 4
20.e even 4 1 200.6.a.e 2
20.e even 4 1 200.6.a.f yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.6.a.e 2 20.e even 4 1
200.6.a.f yes 2 20.e even 4 1
200.6.c.f 4 4.b odd 2 1
200.6.c.f 4 20.d odd 2 1
400.6.a.r 2 5.c odd 4 1
400.6.a.u 2 5.c odd 4 1
400.6.c.o 4 1.a even 1 1 trivial
400.6.c.o 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 514T_{3}^{2} + 50625 \) acting on \(S_{6}^{\mathrm{new}}(400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 514 T^{2} + 50625 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 1960 T^{2} + 898704 \) Copy content Toggle raw display
$11$ \( (T^{2} - 200 T - 96281)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 318150146304 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1795640625 \) Copy content Toggle raw display
$19$ \( (T^{2} + 840 T - 662521)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 1855011312144 \) Copy content Toggle raw display
$29$ \( (T^{2} - 4680 T + 196736)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 5008 T - 23931140)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 302523267094416 \) Copy content Toggle raw display
$41$ \( (T^{2} + 5334 T - 204026247)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 77\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( (T^{2} + 169937296)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 26\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( (T^{2} + 81776 T + 1630122048)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 46932 T + 550186580)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 13\!\cdots\!29 \) Copy content Toggle raw display
$71$ \( (T^{2} + 7448 T - 14650800)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 87\!\cdots\!29 \) Copy content Toggle raw display
$79$ \( (T^{2} + 108104 T + 662040300)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 11\!\cdots\!29 \) Copy content Toggle raw display
$89$ \( (T^{2} + 70990 T - 4823083791)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
show more
show less