L(s) = 1 | + (−0.844 − 0.535i)5-s + (−0.904 − 0.425i)9-s + (−0.344 − 0.957i)13-s + (−1.24 + 1.41i)17-s + (0.425 + 0.904i)25-s + (−0.0922 + 0.233i)29-s + (1.01 + 1.30i)37-s + (0.374 + 1.96i)41-s + (0.535 + 0.844i)45-s + (−0.587 + 0.809i)49-s + (−0.404 + 0.683i)53-s + (0.316 − 1.65i)61-s + (−0.222 + 0.993i)65-s + (−1.91 + 0.555i)73-s + (0.637 + 0.770i)81-s + ⋯ |
L(s) = 1 | + (−0.844 − 0.535i)5-s + (−0.904 − 0.425i)9-s + (−0.344 − 0.957i)13-s + (−1.24 + 1.41i)17-s + (0.425 + 0.904i)25-s + (−0.0922 + 0.233i)29-s + (1.01 + 1.30i)37-s + (0.374 + 1.96i)41-s + (0.535 + 0.844i)45-s + (−0.587 + 0.809i)49-s + (−0.404 + 0.683i)53-s + (0.316 − 1.65i)61-s + (−0.222 + 0.993i)65-s + (−1.91 + 0.555i)73-s + (0.637 + 0.770i)81-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.303−0.952i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.303−0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−0.303−0.952i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), −0.303−0.952i)
|
Particular Values
L(21) |
≈ |
0.3751744676 |
L(21) |
≈ |
0.3751744676 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.844+0.535i)T |
good | 3 | 1+(0.904+0.425i)T2 |
| 7 | 1+(0.587−0.809i)T2 |
| 11 | 1+(0.0627−0.998i)T2 |
| 13 | 1+(0.344+0.957i)T+(−0.770+0.637i)T2 |
| 17 | 1+(1.24−1.41i)T+(−0.125−0.992i)T2 |
| 19 | 1+(0.425+0.904i)T2 |
| 23 | 1+(−0.368+0.929i)T2 |
| 29 | 1+(0.0922−0.233i)T+(−0.728−0.684i)T2 |
| 31 | 1+(−0.992+0.125i)T2 |
| 37 | 1+(−1.01−1.30i)T+(−0.248+0.968i)T2 |
| 41 | 1+(−0.374−1.96i)T+(−0.929+0.368i)T2 |
| 43 | 1+(0.951−0.309i)T2 |
| 47 | 1+(0.982−0.187i)T2 |
| 53 | 1+(0.404−0.683i)T+(−0.481−0.876i)T2 |
| 59 | 1+(−0.535+0.844i)T2 |
| 61 | 1+(−0.316+1.65i)T+(−0.929−0.368i)T2 |
| 67 | 1+(0.684+0.728i)T2 |
| 71 | 1+(−0.187−0.982i)T2 |
| 73 | 1+(1.91−0.555i)T+(0.844−0.535i)T2 |
| 79 | 1+(0.425−0.904i)T2 |
| 83 | 1+(−0.904+0.425i)T2 |
| 89 | 1+(−0.659+1.19i)T+(−0.535−0.844i)T2 |
| 97 | 1+(0.221+0.512i)T+(−0.684+0.728i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.684804917163130566886089935282, −8.142735320545064198340885822909, −7.65334394031779652968438259773, −6.47720940698527892601753440096, −6.02273111608300230098562413926, −4.97419578268359161652012895554, −4.36264361376548981914051923053, −3.42454486767874358746988946629, −2.69099249720673125715962066697, −1.26552875340877029170429066174,
0.21500873562656545217412207866, 2.21034426263210305262649357584, 2.75588940027289519879293057650, 3.87342462417222137202887386289, 4.53837532208357406626792481300, 5.37528767701219904563464732098, 6.31312190435701965654460918397, 7.14150602706473231239388078450, 7.46992177007302234214101629501, 8.495791392465034416927620109737