L(s) = 1 | + (−0.844 − 0.535i)5-s + (−0.904 − 0.425i)9-s + (−0.344 − 0.957i)13-s + (−1.24 + 1.41i)17-s + (0.425 + 0.904i)25-s + (−0.0922 + 0.233i)29-s + (1.01 + 1.30i)37-s + (0.374 + 1.96i)41-s + (0.535 + 0.844i)45-s + (−0.587 + 0.809i)49-s + (−0.404 + 0.683i)53-s + (0.316 − 1.65i)61-s + (−0.222 + 0.993i)65-s + (−1.91 + 0.555i)73-s + (0.637 + 0.770i)81-s + ⋯ |
L(s) = 1 | + (−0.844 − 0.535i)5-s + (−0.904 − 0.425i)9-s + (−0.344 − 0.957i)13-s + (−1.24 + 1.41i)17-s + (0.425 + 0.904i)25-s + (−0.0922 + 0.233i)29-s + (1.01 + 1.30i)37-s + (0.374 + 1.96i)41-s + (0.535 + 0.844i)45-s + (−0.587 + 0.809i)49-s + (−0.404 + 0.683i)53-s + (0.316 − 1.65i)61-s + (−0.222 + 0.993i)65-s + (−1.91 + 0.555i)73-s + (0.637 + 0.770i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.303 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.303 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3751744676\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3751744676\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.844 + 0.535i)T \) |
good | 3 | \( 1 + (0.904 + 0.425i)T^{2} \) |
| 7 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 11 | \( 1 + (0.0627 - 0.998i)T^{2} \) |
| 13 | \( 1 + (0.344 + 0.957i)T + (-0.770 + 0.637i)T^{2} \) |
| 17 | \( 1 + (1.24 - 1.41i)T + (-0.125 - 0.992i)T^{2} \) |
| 19 | \( 1 + (0.425 + 0.904i)T^{2} \) |
| 23 | \( 1 + (-0.368 + 0.929i)T^{2} \) |
| 29 | \( 1 + (0.0922 - 0.233i)T + (-0.728 - 0.684i)T^{2} \) |
| 31 | \( 1 + (-0.992 + 0.125i)T^{2} \) |
| 37 | \( 1 + (-1.01 - 1.30i)T + (-0.248 + 0.968i)T^{2} \) |
| 41 | \( 1 + (-0.374 - 1.96i)T + (-0.929 + 0.368i)T^{2} \) |
| 43 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 47 | \( 1 + (0.982 - 0.187i)T^{2} \) |
| 53 | \( 1 + (0.404 - 0.683i)T + (-0.481 - 0.876i)T^{2} \) |
| 59 | \( 1 + (-0.535 + 0.844i)T^{2} \) |
| 61 | \( 1 + (-0.316 + 1.65i)T + (-0.929 - 0.368i)T^{2} \) |
| 67 | \( 1 + (0.684 + 0.728i)T^{2} \) |
| 71 | \( 1 + (-0.187 - 0.982i)T^{2} \) |
| 73 | \( 1 + (1.91 - 0.555i)T + (0.844 - 0.535i)T^{2} \) |
| 79 | \( 1 + (0.425 - 0.904i)T^{2} \) |
| 83 | \( 1 + (-0.904 + 0.425i)T^{2} \) |
| 89 | \( 1 + (-0.659 + 1.19i)T + (-0.535 - 0.844i)T^{2} \) |
| 97 | \( 1 + (0.221 + 0.512i)T + (-0.684 + 0.728i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.684804917163130566886089935282, −8.142735320545064198340885822909, −7.65334394031779652968438259773, −6.47720940698527892601753440096, −6.02273111608300230098562413926, −4.97419578268359161652012895554, −4.36264361376548981914051923053, −3.42454486767874358746988946629, −2.69099249720673125715962066697, −1.26552875340877029170429066174,
0.21500873562656545217412207866, 2.21034426263210305262649357584, 2.75588940027289519879293057650, 3.87342462417222137202887386289, 4.53837532208357406626792481300, 5.37528767701219904563464732098, 6.31312190435701965654460918397, 7.14150602706473231239388078450, 7.46992177007302234214101629501, 8.495791392465034416927620109737