Properties

Label 4000.1.cq.a.1377.1
Level 40004000
Weight 11
Character 4000.1377
Analytic conductor 1.9961.996
Analytic rank 00
Dimension 4040
Projective image D100D_{100}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,1,Mod(33,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(100))
 
chi = DirichletCharacter(H, H._module([0, 0, 83]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.33");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 4000.cq (of order 100100, degree 4040, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.996260050531.99626005053
Analytic rank: 00
Dimension: 4040
Coefficient field: Q(ζ100)\Q(\zeta_{100})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x40x30+x20x10+1 x^{40} - x^{30} + x^{20} - x^{10} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D100D_{100}
Projective field: Galois closure of Q[x]/(x100)\mathbb{Q}[x]/(x^{100} - \cdots)

Embedding invariants

Embedding label 1377.1
Root 0.904827+0.425779i-0.904827 + 0.425779i of defining polynomial
Character χ\chi == 4000.1377
Dual form 4000.1.cq.a.1313.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8443280.535827i)q5+(0.9048270.425779i)q9+(0.3448630.957895i)q13+(1.24443+1.41153i)q17+(0.425779+0.904827i)q25+(0.0922765+0.233064i)q29+(1.01385+1.30704i)q37+(0.374023+1.96070i)q41+(0.535827+0.844328i)q45+(0.587785+0.809017i)q49+(0.404329+0.683684i)q53+(0.3164231.65875i)q61+(0.222088+0.993564i)q65+(1.91206+0.555506i)q73+(0.637424+0.770513i)q81+(1.807040.524995i)q85+(0.6595661.19975i)q89+(0.2216010.512091i)q97+O(q100)q+(-0.844328 - 0.535827i) q^{5} +(-0.904827 - 0.425779i) q^{9} +(-0.344863 - 0.957895i) q^{13} +(-1.24443 + 1.41153i) q^{17} +(0.425779 + 0.904827i) q^{25} +(-0.0922765 + 0.233064i) q^{29} +(1.01385 + 1.30704i) q^{37} +(0.374023 + 1.96070i) q^{41} +(0.535827 + 0.844328i) q^{45} +(-0.587785 + 0.809017i) q^{49} +(-0.404329 + 0.683684i) q^{53} +(0.316423 - 1.65875i) q^{61} +(-0.222088 + 0.993564i) q^{65} +(-1.91206 + 0.555506i) q^{73} +(0.637424 + 0.770513i) q^{81} +(1.80704 - 0.524995i) q^{85} +(0.659566 - 1.19975i) q^{89} +(-0.221601 - 0.512091i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q+10q85+10q89+O(q100) 40 q + 10 q^{85} + 10 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4000Z)×\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times.

nn 13771377 25012501 27512751
χ(n)\chi(n) e(1100)e\left(\frac{1}{100}\right) 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 0.218143 0.975917i 0.430000π-0.430000\pi
−0.218143 + 0.975917i 0.570000π0.570000\pi
44 0 0
55 −0.844328 0.535827i −0.844328 0.535827i
66 0 0
77 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
88 0 0
99 −0.904827 0.425779i −0.904827 0.425779i
1010 0 0
1111 0 0 −0.684547 0.728969i 0.740000π-0.740000\pi
0.684547 + 0.728969i 0.260000π0.260000\pi
1212 0 0
1313 −0.344863 0.957895i −0.344863 0.957895i −0.982287 0.187381i 0.940000π-0.940000\pi
0.637424 0.770513i 0.280000π-0.280000\pi
1414 0 0
1515 0 0
1616 0 0
1717 −1.24443 + 1.41153i −1.24443 + 1.41153i −0.368125 + 0.929776i 0.620000π0.620000\pi
−0.876307 + 0.481754i 0.840000π0.840000\pi
1818 0 0
1919 0 0 0.535827 0.844328i 0.320000π-0.320000\pi
−0.535827 + 0.844328i 0.680000π0.680000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 0.827081 0.562083i 0.190000π-0.190000\pi
−0.827081 + 0.562083i 0.810000π0.810000\pi
2424 0 0
2525 0.425779 + 0.904827i 0.425779 + 0.904827i
2626 0 0
2727 0 0
2828 0 0
2929 −0.0922765 + 0.233064i −0.0922765 + 0.233064i −0.968583 0.248690i 0.920000π-0.920000\pi
0.876307 + 0.481754i 0.160000π0.160000\pi
3030 0 0
3131 0 0 0.998027 0.0627905i 0.0200000π-0.0200000\pi
−0.998027 + 0.0627905i 0.980000π0.980000\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.01385 + 1.30704i 1.01385 + 1.30704i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.0627905 + 0.998027i 0.480000π0.480000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0.374023 + 1.96070i 0.374023 + 1.96070i 0.248690 + 0.968583i 0.420000π0.420000\pi
0.125333 + 0.992115i 0.460000π0.460000\pi
4242 0 0
4343 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
4444 0 0
4545 0.535827 + 0.844328i 0.535827 + 0.844328i
4646 0 0
4747 0 0 −0.0941083 0.995562i 0.530000π-0.530000\pi
0.0941083 + 0.995562i 0.470000π0.470000\pi
4848 0 0
4949 −0.587785 + 0.809017i −0.587785 + 0.809017i
5050 0 0
5151 0 0
5252 0 0
5353 −0.404329 + 0.683684i −0.404329 + 0.683684i −0.992115 0.125333i 0.960000π-0.960000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.876307 0.481754i 0.160000π-0.160000\pi
−0.876307 + 0.481754i 0.840000π0.840000\pi
6060 0 0
6161 0.316423 1.65875i 0.316423 1.65875i −0.368125 0.929776i 0.620000π-0.620000\pi
0.684547 0.728969i 0.260000π-0.260000\pi
6262 0 0
6363 0 0
6464 0 0
6565 −0.222088 + 0.993564i −0.222088 + 0.993564i
6666 0 0
6767 0 0 0.397148 0.917755i 0.370000π-0.370000\pi
−0.397148 + 0.917755i 0.630000π0.630000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.770513 0.637424i 0.780000π-0.780000\pi
0.770513 + 0.637424i 0.220000π0.220000\pi
7272 0 0
7373 −1.91206 + 0.555506i −1.91206 + 0.555506i −0.929776 + 0.368125i 0.880000π0.880000\pi
−0.982287 + 0.187381i 0.940000π0.940000\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.535827 0.844328i 0.680000π-0.680000\pi
0.535827 + 0.844328i 0.320000π0.320000\pi
8080 0 0
8181 0.637424 + 0.770513i 0.637424 + 0.770513i
8282 0 0
8383 0 0 0.975917 0.218143i 0.0700000π-0.0700000\pi
−0.975917 + 0.218143i 0.930000π0.930000\pi
8484 0 0
8585 1.80704 0.524995i 1.80704 0.524995i
8686 0 0
8787 0 0
8888 0 0
8989 0.659566 1.19975i 0.659566 1.19975i −0.309017 0.951057i 0.600000π-0.600000\pi
0.968583 0.248690i 0.0800000π-0.0800000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.221601 0.512091i −0.221601 0.512091i 0.770513 0.637424i 0.220000π-0.220000\pi
−0.992115 + 0.125333i 0.960000π0.960000\pi
9898 0 0
9999 0 0
100100 0 0
101101 −0.541587 + 1.66683i −0.541587 + 1.66683i 0.187381 + 0.982287i 0.440000π0.440000\pi
−0.728969 + 0.684547i 0.760000π0.760000\pi
102102 0 0
103103 0 0 0.750111 0.661312i 0.230000π-0.230000\pi
−0.750111 + 0.661312i 0.770000π0.770000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
108108 0 0
109109 0.159781 1.26480i 0.159781 1.26480i −0.684547 0.728969i 0.740000π-0.740000\pi
0.844328 0.535827i 0.180000π-0.180000\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.557707 + 1.91964i −0.557707 + 1.91964i −0.248690 + 0.968583i 0.580000π0.580000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.0958101 + 1.01356i −0.0958101 + 1.01356i
118118 0 0
119119 0 0
120120 0 0
121121 −0.0627905 + 0.998027i −0.0627905 + 0.998027i
122122 0 0
123123 0 0
124124 0 0
125125 0.125333 0.992115i 0.125333 0.992115i
126126 0 0
127127 0 0 0.0314108 0.999507i 0.490000π-0.490000\pi
−0.0314108 + 0.999507i 0.510000π0.510000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 0.248690 0.968583i 0.420000π-0.420000\pi
−0.248690 + 0.968583i 0.580000π0.580000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −0.418963 0.121720i −0.418963 0.121720i 0.0627905 0.998027i 0.480000π-0.480000\pi
−0.481754 + 0.876307i 0.660000π0.660000\pi
138138 0 0
139139 0 0 −0.425779 0.904827i 0.640000π-0.640000\pi
0.425779 + 0.904827i 0.360000π0.360000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0.202793 0.147338i 0.202793 0.147338i
146146 0 0
147147 0 0
148148 0 0
149149 −1.76854 0.574633i −1.76854 0.574633i −0.770513 0.637424i 0.780000π-0.780000\pi
−0.998027 + 0.0627905i 0.980000π0.980000\pi
150150 0 0
151151 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
152152 0 0
153153 1.72700 0.747338i 1.72700 0.747338i
154154 0 0
155155 0 0
156156 0 0
157157 0.0620481 + 0.00982745i 0.0620481 + 0.00982745i 0.187381 0.982287i 0.440000π-0.440000\pi
−0.125333 + 0.992115i 0.540000π0.540000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 0.562083 0.827081i 0.310000π-0.310000\pi
−0.562083 + 0.827081i 0.690000π0.690000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.218143 0.975917i 0.570000π-0.570000\pi
0.218143 + 0.975917i 0.430000π0.430000\pi
168168 0 0
169169 −0.0281181 + 0.0232613i −0.0281181 + 0.0232613i
170170 0 0
171171 0 0
172172 0 0
173173 −1.80704 0.650576i −1.80704 0.650576i −0.998027 0.0627905i 0.980000π-0.980000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.637424 0.770513i 0.280000π-0.280000\pi
−0.637424 + 0.770513i 0.720000π0.720000\pi
180180 0 0
181181 −1.35556 + 0.536702i −1.35556 + 0.536702i −0.929776 0.368125i 0.880000π-0.880000\pi
−0.425779 + 0.904827i 0.640000π0.640000\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.155670 1.64682i −0.155670 1.64682i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.481754 0.876307i 0.660000π-0.660000\pi
0.481754 + 0.876307i 0.340000π0.340000\pi
192192 0 0
193193 −1.38015 + 1.38015i −1.38015 + 1.38015i −0.535827 + 0.844328i 0.680000π0.680000\pi
−0.844328 + 0.535827i 0.820000π0.820000\pi
194194 0 0
195195 0 0
196196 0 0
197197 1.29130 + 0.763675i 1.29130 + 0.763675i 0.982287 0.187381i 0.0600000π-0.0600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
198198 0 0
199199 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0.734796 1.85588i 0.734796 1.85588i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.125333 0.992115i 0.540000π-0.540000\pi
0.125333 + 0.992115i 0.460000π0.460000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 1.78126 + 0.705249i 1.78126 + 0.705249i
222222 0 0
223223 0 0 −0.790155 0.612907i 0.790000π-0.790000\pi
0.790155 + 0.612907i 0.210000π0.210000\pi
224224 0 0
225225 1.00000i 1.00000i
226226 0 0
227227 0 0 −0.562083 0.827081i 0.690000π-0.690000\pi
0.562083 + 0.827081i 0.310000π0.310000\pi
228228 0 0
229229 0.183098 + 0.713118i 0.183098 + 0.713118i 0.992115 + 0.125333i 0.0400000π0.0400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0.992115 + 0.874667i 0.992115 + 0.874667i 0.992115 0.125333i 0.0400000π-0.0400000\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.728969 0.684547i 0.240000π-0.240000\pi
−0.728969 + 0.684547i 0.760000π0.760000\pi
240240 0 0
241241 0.836475 1.77760i 0.836475 1.77760i 0.248690 0.968583i 0.420000π-0.420000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.929776 0.368125i 0.929776 0.368125i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −0.167702 + 0.0854486i −0.167702 + 0.0854486i −0.535827 0.844328i 0.680000π-0.680000\pi
0.368125 + 0.929776i 0.380000π0.380000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0.182728 0.171593i 0.182728 0.171593i
262262 0 0
263263 0 0 0.940881 0.338738i 0.110000π-0.110000\pi
−0.940881 + 0.338738i 0.890000π0.890000\pi
264264 0 0
265265 0.707723 0.360603i 0.707723 0.360603i
266266 0 0
267267 0 0
268268 0 0
269269 0.904827 + 0.574221i 0.904827 + 0.574221i 0.904827 0.425779i 0.140000π-0.140000\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 −0.248690 0.968583i 0.580000π-0.580000\pi
0.248690 + 0.968583i 0.420000π0.420000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −0.968583 0.751310i −0.968583 0.751310i 1.00000i 0.5π-0.5\pi
−0.968583 + 0.248690i 0.920000π0.920000\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.0462295 0.734796i −0.0462295 0.734796i −0.951057 0.309017i 0.900000π-0.900000\pi
0.904827 0.425779i 0.140000π-0.140000\pi
282282 0 0
283283 0 0 −0.509041 0.860742i 0.670000π-0.670000\pi
0.509041 + 0.860742i 0.330000π0.330000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.318475 2.52099i −0.318475 2.52099i
290290 0 0
291291 0 0
292292 0 0
293293 −1.56085 + 0.247215i −1.56085 + 0.247215i −0.876307 0.481754i 0.840000π-0.840000\pi
−0.684547 + 0.728969i 0.740000π0.740000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −1.15596 + 1.23098i −1.15596 + 1.23098i
306306 0 0
307307 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.982287 0.187381i 0.940000π-0.940000\pi
0.982287 + 0.187381i 0.0600000π0.0600000\pi
312312 0 0
313313 0.907533 0.0285204i 0.907533 0.0285204i 0.425779 0.904827i 0.360000π-0.360000\pi
0.481754 + 0.876307i 0.340000π0.340000\pi
314314 0 0
315315 0 0
316316 0 0
317317 −0.287137 0.124255i −0.287137 0.124255i 0.248690 0.968583i 0.420000π-0.420000\pi
−0.535827 + 0.844328i 0.680000π0.680000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0.719893 0.719893i 0.719893 0.719893i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 0.770513 0.637424i 0.220000π-0.220000\pi
−0.770513 + 0.637424i 0.780000π0.780000\pi
332332 0 0
333333 −0.360844 1.61432i −0.360844 1.61432i
334334 0 0
335335 0 0
336336 0 0
337337 −1.11033 + 1.63380i −1.11033 + 1.63380i −0.425779 + 0.904827i 0.640000π0.640000\pi
−0.684547 + 0.728969i 0.740000π0.740000\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.917755 0.397148i 0.130000π-0.130000\pi
−0.917755 + 0.397148i 0.870000π0.870000\pi
348348 0 0
349349 1.86842 0.607087i 1.86842 0.607087i 0.876307 0.481754i 0.160000π-0.160000\pi
0.992115 0.125333i 0.0400000π-0.0400000\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.17847 1.33671i −1.17847 1.33671i −0.929776 0.368125i 0.880000π-0.880000\pi
−0.248690 0.968583i 0.580000π-0.580000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.992115 0.125333i 0.960000π-0.960000\pi
0.992115 + 0.125333i 0.0400000π0.0400000\pi
360360 0 0
361361 −0.425779 0.904827i −0.425779 0.904827i
362362 0 0
363363 0 0
364364 0 0
365365 1.91206 + 0.555506i 1.91206 + 0.555506i
366366 0 0
367367 0 0 −0.995562 0.0941083i 0.970000π-0.970000\pi
0.995562 + 0.0941083i 0.0300000π0.0300000\pi
368368 0 0
369369 0.496398 1.93334i 0.496398 1.93334i
370370 0 0
371371 0 0
372372 0 0
373373 0.0559744 1.78113i 0.0559744 1.78113i −0.425779 0.904827i 0.640000π-0.640000\pi
0.481754 0.876307i 0.340000π-0.340000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0.255073 + 0.00801600i 0.255073 + 0.00801600i
378378 0 0
379379 0 0 0.0627905 0.998027i 0.480000π-0.480000\pi
−0.0627905 + 0.998027i 0.520000π0.520000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.0941083 0.995562i 0.470000π-0.470000\pi
−0.0941083 + 0.995562i 0.530000π0.530000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −0.113629 + 0.0534698i −0.113629 + 0.0534698i −0.481754 0.876307i 0.660000π-0.660000\pi
0.368125 + 0.929776i 0.380000π0.380000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.48175 + 1.30634i −1.48175 + 1.30634i −0.637424 + 0.770513i 0.720000π0.720000\pi
−0.844328 + 0.535827i 0.820000π0.820000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.331159 + 1.01920i 0.331159 + 1.01920i 0.968583 + 0.248690i 0.0800000π0.0800000\pi
−0.637424 + 0.770513i 0.720000π0.720000\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.125333 0.992115i −0.125333 0.992115i
406406 0 0
407407 0 0
408408 0 0
409409 0.256543 0.273190i 0.256543 0.273190i −0.587785 0.809017i 0.700000π-0.700000\pi
0.844328 + 0.535827i 0.180000π0.180000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.637424 0.770513i 0.720000π-0.720000\pi
0.637424 + 0.770513i 0.280000π0.280000\pi
420420 0 0
421421 0.516273 + 0.813516i 0.516273 + 0.813516i 0.998027 0.0627905i 0.0200000π-0.0200000\pi
−0.481754 + 0.876307i 0.660000π0.660000\pi
422422 0 0
423423 0 0
424424 0 0
425425 −1.80704 0.524995i −1.80704 0.524995i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.368125 0.929776i 0.620000π-0.620000\pi
0.368125 + 0.929776i 0.380000π0.380000\pi
432432 0 0
433433 −0.595810 + 1.37684i −0.595810 + 1.37684i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.904827 + 0.425779i 0.860000π0.860000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.187381 0.982287i 0.440000π-0.440000\pi
−0.187381 + 0.982287i 0.560000π0.560000\pi
440440 0 0
441441 0.876307 0.481754i 0.876307 0.481754i
442442 0 0
443443 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
444444 0 0
445445 −1.19975 + 0.659566i −1.19975 + 0.659566i
446446 0 0
447447 0 0
448448 0 0
449449 0.856954 + 1.17950i 0.856954 + 1.17950i 0.982287 + 0.187381i 0.0600000π0.0600000\pi
−0.125333 + 0.992115i 0.540000π0.540000\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.0489435 0.309017i −0.0489435 0.309017i 0.951057 0.309017i 0.100000π-0.100000\pi
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 −0.844844 + 0.106729i −0.844844 + 0.106729i −0.535827 0.844328i 0.680000π-0.680000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
462462 0 0
463463 0 0 −0.612907 0.790155i 0.710000π-0.710000\pi
0.612907 + 0.790155i 0.290000π0.290000\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.860742 0.509041i 0.170000π-0.170000\pi
−0.860742 + 0.509041i 0.830000π0.830000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.656947 0.446460i 0.656947 0.446460i
478478 0 0
479479 0 0 0.968583 0.248690i 0.0800000π-0.0800000\pi
−0.968583 + 0.248690i 0.920000π0.920000\pi
480480 0 0
481481 0.902371 1.42191i 0.902371 1.42191i
482482 0 0
483483 0 0
484484 0 0
485485 −0.0872876 + 0.551113i −0.0872876 + 0.551113i
486486 0 0
487487 0 0 −0.338738 0.940881i 0.610000π-0.610000\pi
0.338738 + 0.940881i 0.390000π0.390000\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.904827 0.425779i 0.860000π-0.860000\pi
0.904827 + 0.425779i 0.140000π0.140000\pi
492492 0 0
493493 −0.214145 0.420283i −0.214145 0.420283i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.218143 0.975917i 0.430000π-0.430000\pi
−0.218143 + 0.975917i 0.570000π0.570000\pi
504504 0 0
505505 1.35041 1.11716i 1.35041 1.11716i
506506 0 0
507507 0 0
508508 0 0
509509 −1.63742 0.770513i −1.63742 0.770513i −0.637424 0.770513i 0.720000π-0.720000\pi
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 1.80113 0.462452i 1.80113 0.462452i 0.809017 0.587785i 0.200000π-0.200000\pi
0.992115 + 0.125333i 0.0400000π0.0400000\pi
522522 0 0
523523 0 0 0.827081 0.562083i 0.190000π-0.190000\pi
−0.827081 + 0.562083i 0.810000π0.810000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.368125 0.929776i 0.368125 0.929776i
530530 0 0
531531 0 0
532532 0 0
533533 1.74915 1.03445i 1.74915 1.03445i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −0.371808 1.94908i −0.371808 1.94908i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.0627905 0.998027i 0.520000π-0.520000\pi
542542 0 0
543543 0 0
544544 0 0
545545 −0.812619 + 0.982287i −0.812619 + 0.982287i
546546 0 0
547547 0 0 −0.0941083 0.995562i 0.530000π-0.530000\pi
0.0941083 + 0.995562i 0.470000π0.470000\pi
548548 0 0
549549 −0.992567 + 1.36615i −0.992567 + 1.36615i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 1.41352 + 1.41352i 1.41352 + 1.41352i 0.728969 + 0.684547i 0.240000π0.240000\pi
0.684547 + 0.728969i 0.260000π0.260000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.0314108 0.999507i 0.510000π-0.510000\pi
0.0314108 + 0.999507i 0.490000π0.490000\pi
564564 0 0
565565 1.49948 1.32197i 1.49948 1.32197i
566566 0 0
567567 0 0
568568 0 0
569569 −0.313480 0.791759i −0.313480 0.791759i −0.998027 0.0627905i 0.980000π-0.980000\pi
0.684547 0.728969i 0.260000π-0.260000\pi
570570 0 0
571571 0 0 −0.770513 0.637424i 0.780000π-0.780000\pi
0.770513 + 0.637424i 0.220000π0.220000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0.105981 0.294372i 0.105981 0.294372i −0.876307 0.481754i 0.840000π-0.840000\pi
0.982287 + 0.187381i 0.0600000π0.0600000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0.623990 0.804443i 0.623990 0.804443i
586586 0 0
587587 0 0 −0.827081 0.562083i 0.810000π-0.810000\pi
0.827081 + 0.562083i 0.190000π0.190000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.191760 1.21072i 0.191760 1.21072i −0.684547 0.728969i 0.740000π-0.740000\pi
0.876307 0.481754i 0.160000π-0.160000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
600600 0 0
601601 −0.153699 + 0.473036i −0.153699 + 0.473036i −0.998027 0.0627905i 0.980000π-0.980000\pi
0.844328 + 0.535827i 0.180000π0.180000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.587785 0.809017i 0.587785 0.809017i
606606 0 0
607607 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.313633 + 1.07953i −0.313633 + 1.07953i 0.637424 + 0.770513i 0.280000π0.280000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.141183 + 1.49356i −0.141183 + 1.49356i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.728969 + 0.684547i 0.760000π0.760000\pi
618618 0 0
619619 0 0 −0.968583 0.248690i 0.920000π-0.920000\pi
0.968583 + 0.248690i 0.0800000π0.0800000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.637424 + 0.770513i −0.637424 + 0.770513i
626626 0 0
627627 0 0
628628 0 0
629629 −3.10659 0.195450i −3.10659 0.195450i
630630 0 0
631631 0 0 0.248690 0.968583i 0.420000π-0.420000\pi
−0.248690 + 0.968583i 0.580000π0.580000\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0.977659 + 0.284036i 0.977659 + 0.284036i
638638 0 0
639639 0 0
640640 0 0
641641 1.88711 + 0.238398i 1.88711 + 0.238398i 0.982287 0.187381i 0.0600000π-0.0600000\pi
0.904827 + 0.425779i 0.140000π0.140000\pi
642642 0 0
643643 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.661312 0.750111i 0.730000π-0.730000\pi
0.661312 + 0.750111i 0.270000π0.270000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.512091 + 0.221601i −0.512091 + 0.221601i −0.637424 0.770513i 0.720000π-0.720000\pi
0.125333 + 0.992115i 0.460000π0.460000\pi
654654 0 0
655655 0 0
656656 0 0
657657 1.96661 + 0.311480i 1.96661 + 0.311480i
658658 0 0
659659 0 0 −0.728969 0.684547i 0.760000π-0.760000\pi
0.728969 + 0.684547i 0.240000π0.240000\pi
660660 0 0
661661 1.66683 + 0.916350i 1.66683 + 0.916350i 0.982287 + 0.187381i 0.0600000π0.0600000\pi
0.684547 + 0.728969i 0.260000π0.260000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.48688 + 0.535311i 1.48688 + 0.535311i 0.951057 0.309017i 0.100000π-0.100000\pi
0.535827 + 0.844328i 0.320000π0.320000\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.551113 1.89694i −0.551113 1.89694i −0.425779 0.904827i 0.640000π-0.640000\pi
−0.125333 0.992115i 0.540000π-0.540000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.917755 0.397148i 0.870000π-0.870000\pi
0.917755 + 0.397148i 0.130000π0.130000\pi
684684 0 0
685685 0.288521 + 0.327263i 0.288521 + 0.327263i
686686 0 0
687687 0 0
688688 0 0
689689 0.794335 + 0.151528i 0.794335 + 0.151528i
690690 0 0
691691 0 0 −0.481754 0.876307i 0.660000π-0.660000\pi
0.481754 + 0.876307i 0.340000π0.340000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −3.23303 1.91201i −3.23303 1.91201i
698698 0 0
699699 0 0
700700 0 0
701701 −0.402389 0.292352i −0.402389 0.292352i 0.368125 0.929776i 0.380000π-0.380000\pi
−0.770513 + 0.637424i 0.780000π0.780000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.488570 0.0931997i 0.488570 0.0931997i 0.0627905 0.998027i 0.480000π-0.480000\pi
0.425779 + 0.904827i 0.360000π0.360000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.0627905 0.998027i 0.520000π-0.520000\pi
0.0627905 + 0.998027i 0.480000π0.480000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 −0.250172 + 0.0157395i −0.250172 + 0.0157395i
726726 0 0
727727 0 0 −0.562083 0.827081i 0.690000π-0.690000\pi
0.562083 + 0.827081i 0.310000π0.310000\pi
728728 0 0
729729 −0.248690 0.968583i −0.248690 0.968583i
730730 0 0
731731 0 0
732732 0 0
733733 1.33671 + 1.17847i 1.33671 + 1.17847i 0.968583 + 0.248690i 0.0800000π0.0800000\pi
0.368125 + 0.929776i 0.380000π0.380000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.728969 0.684547i 0.240000π-0.240000\pi
−0.728969 + 0.684547i 0.760000π0.760000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
744744 0 0
745745 1.18532 + 1.43281i 1.18532 + 1.43281i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.388734 0.198070i 0.388734 0.198070i −0.248690 0.968583i 0.580000π-0.580000\pi
0.637424 + 0.770513i 0.280000π0.280000\pi
758758 0 0
759759 0 0
760760 0 0
761761 −0.929324 + 0.872693i −0.929324 + 0.872693i −0.992115 0.125333i 0.960000π-0.960000\pi
0.0627905 + 0.998027i 0.480000π0.480000\pi
762762 0 0
763763 0 0
764764 0 0
765765 −1.85859 0.294372i −1.85859 0.294372i
766766 0 0
767767 0 0
768768 0 0
769769 0.992567 + 0.629902i 0.992567 + 0.629902i 0.929776 0.368125i 0.120000π-0.120000\pi
0.0627905 + 0.998027i 0.480000π0.480000\pi
770770 0 0
771771 0 0
772772 0 0
773773 −0.105793 0.155670i −0.105793 0.155670i 0.770513 0.637424i 0.220000π-0.220000\pi
−0.876307 + 0.481754i 0.840000π0.840000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −0.0471231 0.0415446i −0.0471231 0.0415446i
786786 0 0
787787 0 0 0.790155 0.612907i 0.210000π-0.210000\pi
−0.790155 + 0.612907i 0.790000π0.790000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −1.69803 + 0.268941i −1.69803 + 0.268941i
794794 0 0
795795 0 0
796796 0 0
797797 −1.31675 + 0.124470i −1.31675 + 0.124470i −0.728969 0.684547i 0.760000π-0.760000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
798798 0 0
799799 0 0
800800 0 0
801801 −1.10762 + 0.804733i −1.10762 + 0.804733i
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.871808 1.58581i −0.871808 1.58581i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.0627905 0.998027i 0.520000π-0.520000\pi
810810 0 0
811811 0 0 −0.982287 0.187381i 0.940000π-0.940000\pi
0.982287 + 0.187381i 0.0600000π0.0600000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.21245 + 1.46560i −1.21245 + 1.46560i −0.368125 + 0.929776i 0.620000π0.620000\pi
−0.844328 + 0.535827i 0.820000π0.820000\pi
822822 0 0
823823 0 0 −0.278991 0.960294i 0.590000π-0.590000\pi
0.278991 + 0.960294i 0.410000π0.410000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.940881 0.338738i 0.890000π-0.890000\pi
0.940881 + 0.338738i 0.110000π0.110000\pi
828828 0 0
829829 −1.63560 + 1.03799i −1.63560 + 1.03799i −0.684547 + 0.728969i 0.740000π0.740000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.410494 1.83644i −0.410494 1.83644i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.876307 0.481754i 0.840000π-0.840000\pi
0.876307 + 0.481754i 0.160000π0.160000\pi
840840 0 0
841841 0.683165 + 0.641534i 0.683165 + 0.641534i
842842 0 0
843843 0 0
844844 0 0
845845 0.0362049 0.00457374i 0.0362049 0.00457374i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −1.21384 1.37684i −1.21384 1.37684i −0.904827 0.425779i 0.860000π-0.860000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0.896802 1.76007i 0.896802 1.76007i 0.309017 0.951057i 0.400000π-0.400000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
858858 0 0
859859 0 0 −0.992115 0.125333i 0.960000π-0.960000\pi
0.992115 + 0.125333i 0.0400000π0.0400000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.960294 0.278991i 0.910000π-0.910000\pi
0.960294 + 0.278991i 0.0900000π0.0900000\pi
864864 0 0
865865 1.17714 + 1.51756i 1.17714 + 1.51756i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −0.0175266 + 0.557707i −0.0175266 + 0.557707i
874874 0 0
875875 0 0
876876 0 0
877877 1.99014 + 0.0625427i 1.99014 + 0.0625427i 0.998027 0.0627905i 0.0200000π-0.0200000\pi
0.992115 + 0.125333i 0.0400000π0.0400000\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.84235 0.473036i −1.84235 0.473036i −0.844328 0.535827i 0.820000π-0.820000\pi
−0.998027 + 0.0627905i 0.980000π0.980000\pi
882882 0 0
883883 0 0 0.0941083 0.995562i 0.470000π-0.470000\pi
−0.0941083 + 0.995562i 0.530000π0.530000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.278991 0.960294i 0.410000π-0.410000\pi
−0.278991 + 0.960294i 0.590000π0.590000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −0.461880 1.42152i −0.461880 1.42152i
902902 0 0
903903 0 0
904904 0 0
905905 1.43211 + 0.273190i 1.43211 + 0.273190i
906906 0 0
907907 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
908908 0 0
909909 1.19975 1.27760i 1.19975 1.27760i
910910 0 0
911911 0 0 0.481754 0.876307i 0.340000π-0.340000\pi
−0.481754 + 0.876307i 0.660000π0.660000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 −0.637424 0.770513i 0.720000π-0.720000\pi
0.637424 + 0.770513i 0.280000π0.280000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −0.750973 + 1.47387i −0.750973 + 1.47387i
926926 0 0
927927 0 0
928928 0 0
929929 −1.35041 1.11716i −1.35041 1.11716i −0.982287 0.187381i 0.940000π-0.940000\pi
−0.368125 0.929776i 0.620000π-0.620000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.0353109 1.12361i −0.0353109 1.12361i −0.844328 0.535827i 0.820000π-0.820000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.73879 + 0.955910i −1.73879 + 0.955910i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.929776 + 0.368125i 0.880000π0.880000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.509041 0.860742i 0.330000π-0.330000\pi
−0.509041 + 0.860742i 0.670000π0.670000\pi
948948 0 0
949949 1.19152 + 1.63998i 1.19152 + 1.63998i
950950 0 0
951951 0 0
952952 0 0
953953 −0.0637561 0.674469i −0.0637561 0.674469i −0.968583 0.248690i 0.920000π-0.920000\pi
0.904827 0.425779i 0.140000π-0.140000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.992115 0.125333i 0.992115 0.125333i
962962 0 0
963963 0 0
964964 0 0
965965 1.90483 0.425779i 1.90483 0.425779i
966966 0 0
967967 0 0 0.860742 0.509041i 0.170000π-0.170000\pi
−0.860742 + 0.509041i 0.830000π0.830000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.368125 0.929776i 0.380000π-0.380000\pi
−0.368125 + 0.929776i 0.620000π0.620000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −0.155670 + 0.105793i −0.155670 + 0.105793i −0.637424 0.770513i 0.720000π-0.720000\pi
0.481754 + 0.876307i 0.340000π0.340000\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.683098 + 1.07639i −0.683098 + 1.07639i
982982 0 0
983983 0 0 0.661312 0.750111i 0.270000π-0.270000\pi
−0.661312 + 0.750111i 0.730000π0.730000\pi
984984 0 0
985985 −0.681087 1.33671i −0.681087 1.33671i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.904827 0.425779i 0.860000π-0.860000\pi
0.904827 + 0.425779i 0.140000π0.140000\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.0682502 + 0.305334i −0.0682502 + 0.305334i −0.998027 0.0627905i 0.980000π-0.980000\pi
0.929776 + 0.368125i 0.120000π0.120000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.1.cq.a.1377.1 yes 40
4.3 odd 2 CM 4000.1.cq.a.1377.1 yes 40
125.63 odd 100 inner 4000.1.cq.a.1313.1 40
500.63 even 100 inner 4000.1.cq.a.1313.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.1.cq.a.1313.1 40 125.63 odd 100 inner
4000.1.cq.a.1313.1 40 500.63 even 100 inner
4000.1.cq.a.1377.1 yes 40 1.1 even 1 trivial
4000.1.cq.a.1377.1 yes 40 4.3 odd 2 CM