Properties

Label 4000.1
Level 4000
Weight 1
Dimension 128
Nonzero newspaces 9
Newform subspaces 16
Sturm bound 960000
Trace bound 29

Downloads

Learn more

Defining parameters

Level: N N = 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k = 1 1
Nonzero newspaces: 9 9
Newform subspaces: 16 16
Sturm bound: 960000960000
Trace bound: 2929

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(4000))M_{1}(\Gamma_1(4000)).

Total New Old
Modular forms 6292 1408 4884
Cusp forms 532 128 404
Eisenstein series 5760 1280 4480

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 88 0 0 40

Trace form

128q+4q118q132q17+12q21+6q29+12q41+4q49+4q5714q612q69+4q734q81+10q85+20q89+8q91+8q932q97+O(q100) 128 q + 4 q^{11} - 8 q^{13} - 2 q^{17} + 12 q^{21} + 6 q^{29} + 12 q^{41} + 4 q^{49} + 4 q^{57} - 14 q^{61} - 2 q^{69} + 4 q^{73} - 4 q^{81} + 10 q^{85} + 20 q^{89} + 8 q^{91} + 8 q^{93} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(4000))S_{1}^{\mathrm{new}}(\Gamma_1(4000))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
4000.1.b χ4000(2751,)\chi_{4000}(2751, \cdot) 4000.1.b.a 4 1
4000.1.b.b 4
4000.1.e χ4000(1999,)\chi_{4000}(1999, \cdot) 4000.1.e.a 2 1
4000.1.e.b 2
4000.1.g χ4000(751,)\chi_{4000}(751, \cdot) 4000.1.g.a 4 1
4000.1.h χ4000(3999,)\chi_{4000}(3999, \cdot) 4000.1.h.a 4 1
4000.1.h.b 4
4000.1.i χ4000(57,)\chi_{4000}(57, \cdot) None 0 2
4000.1.k χ4000(999,)\chi_{4000}(999, \cdot) None 0 2
4000.1.m χ4000(2193,)\chi_{4000}(2193, \cdot) None 0 2
4000.1.p χ4000(193,)\chi_{4000}(193, \cdot) 4000.1.p.a 8 2
4000.1.p.b 8
4000.1.r χ4000(1751,)\chi_{4000}(1751, \cdot) None 0 2
4000.1.t χ4000(2057,)\chi_{4000}(2057, \cdot) None 0 2
4000.1.w χ4000(1557,)\chi_{4000}(1557, \cdot) None 0 4
4000.1.x χ4000(251,)\chi_{4000}(251, \cdot) None 0 4
4000.1.z χ4000(499,)\chi_{4000}(499, \cdot) None 0 4
4000.1.bc χ4000(557,)\chi_{4000}(557, \cdot) None 0 4
4000.1.bd χ4000(1551,)\chi_{4000}(1551, \cdot) None 0 4
4000.1.bf χ4000(799,)\chi_{4000}(799, \cdot) 4000.1.bf.a 8 4
4000.1.bf.b 8
4000.1.bh χ4000(351,)\chi_{4000}(351, \cdot) 4000.1.bh.a 8 4
4000.1.bi χ4000(399,)\chi_{4000}(399, \cdot) None 0 4
4000.1.bk χ4000(457,)\chi_{4000}(457, \cdot) None 0 8
4000.1.bn χ4000(199,)\chi_{4000}(199, \cdot) None 0 8
4000.1.bo χ4000(257,)\chi_{4000}(257, \cdot) 4000.1.bo.a 8 8
4000.1.bo.b 8
4000.1.bo.c 8
4000.1.br χ4000(593,)\chi_{4000}(593, \cdot) None 0 8
4000.1.bs χ4000(151,)\chi_{4000}(151, \cdot) None 0 8
4000.1.bv χ4000(393,)\chi_{4000}(393, \cdot) None 0 8
4000.1.bx χ4000(93,)\chi_{4000}(93, \cdot) None 0 16
4000.1.ca χ4000(99,)\chi_{4000}(99, \cdot) None 0 16
4000.1.cc χ4000(51,)\chi_{4000}(51, \cdot) None 0 16
4000.1.cd χ4000(157,)\chi_{4000}(157, \cdot) None 0 16
4000.1.cf χ4000(159,)\chi_{4000}(159, \cdot) None 0 20
4000.1.cg χ4000(79,)\chi_{4000}(79, \cdot) None 0 20
4000.1.ci χ4000(111,)\chi_{4000}(111, \cdot) None 0 20
4000.1.cl χ4000(31,)\chi_{4000}(31, \cdot) None 0 20
4000.1.cm χ4000(71,)\chi_{4000}(71, \cdot) None 0 40
4000.1.cp χ4000(73,)\chi_{4000}(73, \cdot) None 0 40
4000.1.cq χ4000(33,)\chi_{4000}(33, \cdot) 4000.1.cq.a 40 40
4000.1.ct χ4000(17,)\chi_{4000}(17, \cdot) None 0 40
4000.1.cu χ4000(137,)\chi_{4000}(137, \cdot) None 0 40
4000.1.cx χ4000(39,)\chi_{4000}(39, \cdot) None 0 40
4000.1.cz χ4000(53,)\chi_{4000}(53, \cdot) None 0 80
4000.1.db χ4000(11,)\chi_{4000}(11, \cdot) None 0 80
4000.1.dc χ4000(19,)\chi_{4000}(19, \cdot) None 0 80
4000.1.de χ4000(13,)\chi_{4000}(13, \cdot) None 0 80

Decomposition of S1old(Γ1(4000))S_{1}^{\mathrm{old}}(\Gamma_1(4000)) into lower level spaces

S1old(Γ1(4000)) S_{1}^{\mathrm{old}}(\Gamma_1(4000)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS1new(Γ1(2))S_{1}^{\mathrm{new}}(\Gamma_1(2))20^{\oplus 20}\oplusS1new(Γ1(4))S_{1}^{\mathrm{new}}(\Gamma_1(4))16^{\oplus 16}\oplusS1new(Γ1(5))S_{1}^{\mathrm{new}}(\Gamma_1(5))18^{\oplus 18}\oplusS1new(Γ1(8))S_{1}^{\mathrm{new}}(\Gamma_1(8))12^{\oplus 12}\oplusS1new(Γ1(10))S_{1}^{\mathrm{new}}(\Gamma_1(10))15^{\oplus 15}\oplusS1new(Γ1(16))S_{1}^{\mathrm{new}}(\Gamma_1(16))8^{\oplus 8}\oplusS1new(Γ1(20))S_{1}^{\mathrm{new}}(\Gamma_1(20))12^{\oplus 12}\oplusS1new(Γ1(25))S_{1}^{\mathrm{new}}(\Gamma_1(25))12^{\oplus 12}\oplusS1new(Γ1(32))S_{1}^{\mathrm{new}}(\Gamma_1(32))4^{\oplus 4}\oplusS1new(Γ1(40))S_{1}^{\mathrm{new}}(\Gamma_1(40))9^{\oplus 9}\oplusS1new(Γ1(50))S_{1}^{\mathrm{new}}(\Gamma_1(50))10^{\oplus 10}\oplusS1new(Γ1(80))S_{1}^{\mathrm{new}}(\Gamma_1(80))6^{\oplus 6}\oplusS1new(Γ1(100))S_{1}^{\mathrm{new}}(\Gamma_1(100))8^{\oplus 8}\oplusS1new(Γ1(125))S_{1}^{\mathrm{new}}(\Gamma_1(125))6^{\oplus 6}\oplusS1new(Γ1(160))S_{1}^{\mathrm{new}}(\Gamma_1(160))3^{\oplus 3}\oplusS1new(Γ1(200))S_{1}^{\mathrm{new}}(\Gamma_1(200))6^{\oplus 6}\oplusS1new(Γ1(250))S_{1}^{\mathrm{new}}(\Gamma_1(250))5^{\oplus 5}\oplusS1new(Γ1(400))S_{1}^{\mathrm{new}}(\Gamma_1(400))4^{\oplus 4}\oplusS1new(Γ1(500))S_{1}^{\mathrm{new}}(\Gamma_1(500))4^{\oplus 4}\oplusS1new(Γ1(800))S_{1}^{\mathrm{new}}(\Gamma_1(800))2^{\oplus 2}\oplusS1new(Γ1(1000))S_{1}^{\mathrm{new}}(\Gamma_1(1000))3^{\oplus 3}\oplusS1new(Γ1(2000))S_{1}^{\mathrm{new}}(\Gamma_1(2000))2^{\oplus 2}