L(s) = 1 | − 1.61·3-s + 7-s + 1.61·9-s − i·11-s + 1.61i·13-s − i·17-s − 1.61i·19-s − 1.61·21-s − 27-s + 29-s + 0.618i·31-s + 1.61i·33-s − 2.61i·39-s + 41-s − 43-s + ⋯ |
L(s) = 1 | − 1.61·3-s + 7-s + 1.61·9-s − i·11-s + 1.61i·13-s − i·17-s − 1.61i·19-s − 1.61·21-s − 27-s + 29-s + 0.618i·31-s + 1.61i·33-s − 2.61i·39-s + 41-s − 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7904678948\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7904678948\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 1.61T + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 - 1.61iT - T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + 1.61iT - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 - 0.618iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + 0.618T + T^{2} \) |
| 53 | \( 1 + 0.618iT - T^{2} \) |
| 59 | \( 1 - 0.618iT - T^{2} \) |
| 61 | \( 1 + 1.61T + T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 + 0.618iT - T^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + 0.618iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.654547955860649450697028317008, −7.61049651912846960021963812336, −6.78791915377205901158550345637, −6.43187419429404153206293303974, −5.47923043703536918048730434549, −4.70069323542054278298463675761, −4.54452971770920375037687192289, −3.05996549815422088108326301628, −1.77439454314597711757064741245, −0.68376958510417186764408494987,
1.07904556784875570062588343217, 1.98478286030508818142116350718, 3.48592615637549310945588258206, 4.54882166413855651252357203775, 4.96504976219949857300362653745, 5.90806520187116067001145941268, 6.12559588596155914759705362497, 7.28878903727813446718688598513, 7.894652818344594194177023213455, 8.452427230156941721161850141470