L(s) = 1 | − 1.61·3-s + 7-s + 1.61·9-s − i·11-s + 1.61i·13-s − i·17-s − 1.61i·19-s − 1.61·21-s − 27-s + 29-s + 0.618i·31-s + 1.61i·33-s − 2.61i·39-s + 41-s − 43-s + ⋯ |
L(s) = 1 | − 1.61·3-s + 7-s + 1.61·9-s − i·11-s + 1.61i·13-s − i·17-s − 1.61i·19-s − 1.61·21-s − 27-s + 29-s + 0.618i·31-s + 1.61i·33-s − 2.61i·39-s + 41-s − 43-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(3999,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.707+0.707i)
|
Particular Values
L(21) |
≈ |
0.7904678948 |
L(21) |
≈ |
0.7904678948 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+1.61T+T2 |
| 7 | 1−T+T2 |
| 11 | 1+iT−T2 |
| 13 | 1−1.61iT−T2 |
| 17 | 1+iT−T2 |
| 19 | 1+1.61iT−T2 |
| 23 | 1+T2 |
| 29 | 1−T+T2 |
| 31 | 1−0.618iT−T2 |
| 37 | 1−T2 |
| 41 | 1−T+T2 |
| 43 | 1+T+T2 |
| 47 | 1+0.618T+T2 |
| 53 | 1+0.618iT−T2 |
| 59 | 1−0.618iT−T2 |
| 61 | 1+1.61T+T2 |
| 67 | 1−0.618T+T2 |
| 71 | 1+iT−T2 |
| 73 | 1+0.618iT−T2 |
| 79 | 1−iT−T2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1+0.618iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.654547955860649450697028317008, −7.61049651912846960021963812336, −6.78791915377205901158550345637, −6.43187419429404153206293303974, −5.47923043703536918048730434549, −4.70069323542054278298463675761, −4.54452971770920375037687192289, −3.05996549815422088108326301628, −1.77439454314597711757064741245, −0.68376958510417186764408494987,
1.07904556784875570062588343217, 1.98478286030508818142116350718, 3.48592615637549310945588258206, 4.54882166413855651252357203775, 4.96504976219949857300362653745, 5.90806520187116067001145941268, 6.12559588596155914759705362497, 7.28878903727813446718688598513, 7.894652818344594194177023213455, 8.452427230156941721161850141470