L(s) = 1 | − 2.71·3-s − 0.0156·7-s + 4.35·9-s + 6.41·11-s − 2.76·13-s − 2.07·17-s + 4.25·19-s + 0.0424·21-s + 5.97·23-s − 3.67·27-s + 5.37·29-s − 3.59·31-s − 17.3·33-s + 9.04·37-s + 7.48·39-s − 7.03·41-s − 4.96·43-s + 5.73·47-s − 6.99·49-s + 5.63·51-s − 10.5·53-s − 11.5·57-s + 1.13·59-s + 8.76·61-s − 0.0682·63-s + 11.0·67-s − 16.2·69-s + ⋯ |
L(s) = 1 | − 1.56·3-s − 0.00591·7-s + 1.45·9-s + 1.93·11-s − 0.765·13-s − 0.503·17-s + 0.976·19-s + 0.00926·21-s + 1.24·23-s − 0.707·27-s + 0.998·29-s − 0.645·31-s − 3.02·33-s + 1.48·37-s + 1.19·39-s − 1.09·41-s − 0.756·43-s + 0.836·47-s − 0.999·49-s + 0.788·51-s − 1.45·53-s − 1.52·57-s + 0.147·59-s + 1.12·61-s − 0.00859·63-s + 1.34·67-s − 1.95·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.174163189 |
L(21) |
≈ |
1.174163189 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.71T+3T2 |
| 7 | 1+0.0156T+7T2 |
| 11 | 1−6.41T+11T2 |
| 13 | 1+2.76T+13T2 |
| 17 | 1+2.07T+17T2 |
| 19 | 1−4.25T+19T2 |
| 23 | 1−5.97T+23T2 |
| 29 | 1−5.37T+29T2 |
| 31 | 1+3.59T+31T2 |
| 37 | 1−9.04T+37T2 |
| 41 | 1+7.03T+41T2 |
| 43 | 1+4.96T+43T2 |
| 47 | 1−5.73T+47T2 |
| 53 | 1+10.5T+53T2 |
| 59 | 1−1.13T+59T2 |
| 61 | 1−8.76T+61T2 |
| 67 | 1−11.0T+67T2 |
| 71 | 1+11.0T+71T2 |
| 73 | 1+7.38T+73T2 |
| 79 | 1−13.4T+79T2 |
| 83 | 1−3.44T+83T2 |
| 89 | 1+9.49T+89T2 |
| 97 | 1−9.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.516081620375125130109334771783, −7.40233536277396324035988824057, −6.67999610935587256834527495147, −6.43698634337159075224958741171, −5.42244116753834411195316403958, −4.82942916001445891427704759402, −4.12030512100496072234391150045, −3.05085770675102854732665702675, −1.57103225844582139590880022156, −0.72606013535257107177248168773,
0.72606013535257107177248168773, 1.57103225844582139590880022156, 3.05085770675102854732665702675, 4.12030512100496072234391150045, 4.82942916001445891427704759402, 5.42244116753834411195316403958, 6.43698634337159075224958741171, 6.67999610935587256834527495147, 7.40233536277396324035988824057, 8.516081620375125130109334771783