Properties

Label 4000.2.a.n
Level 40004000
Weight 22
Character orbit 4000.a
Self dual yes
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.30040000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x611x44x3+29x2+22x+4 x^{6} - 11x^{4} - 4x^{3} + 29x^{2} + 22x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β5+1)q7+(β4+β3+β1+1)q9+(β4+β2+β1+2)q11+(β5+β4+β3++2)q13+(β5β4+β1)q17++(β4+6β3+2β2++10)q99+O(q100) q - \beta_1 q^{3} + ( - \beta_{5} + 1) q^{7} + (\beta_{4} + \beta_{3} + \beta_1 + 1) q^{9} + (\beta_{4} + \beta_{2} + \beta_1 + 2) q^{11} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \cdots + 2) q^{13} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{17}+ \cdots + (\beta_{4} + 6 \beta_{3} + 2 \beta_{2} + \cdots + 10) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q7+4q9+13q11+7q134q17+9q19+7q2312q27+2q29+12q316q33+21q37+26q395q418q43+19q473q49+18q51++43q99+O(q100) 6 q + 3 q^{7} + 4 q^{9} + 13 q^{11} + 7 q^{13} - 4 q^{17} + 9 q^{19} + 7 q^{23} - 12 q^{27} + 2 q^{29} + 12 q^{31} - 6 q^{33} + 21 q^{37} + 26 q^{39} - 5 q^{41} - 8 q^{43} + 19 q^{47} - 3 q^{49} + 18 q^{51}+ \cdots + 43 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x611x44x3+29x2+22x+4 x^{6} - 11x^{4} - 4x^{3} + 29x^{2} + 22x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν36ν2 \nu^{3} - 6\nu - 2 Copy content Toggle raw display
β3\beta_{3}== (ν511ν32ν2+29ν+10)/2 ( \nu^{5} - 11\nu^{3} - 2\nu^{2} + 29\nu + 10 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν5+11ν3+4ν231ν18)/2 ( -\nu^{5} + 11\nu^{3} + 4\nu^{2} - 31\nu - 18 ) / 2 Copy content Toggle raw display
β5\beta_{5}== (3ν5+2ν4+31ν36ν279ν26)/2 ( -3\nu^{5} + 2\nu^{4} + 31\nu^{3} - 6\nu^{2} - 79\nu - 26 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4+β3+β1+4 \beta_{4} + \beta_{3} + \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== β2+6β1+2 \beta_{2} + 6\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== β5+6β4+9β3+β2+8β1+24 \beta_{5} + 6\beta_{4} + 9\beta_{3} + \beta_{2} + 8\beta _1 + 24 Copy content Toggle raw display
ν5\nu^{5}== 2β4+4β3+11β2+39β1+20 2\beta_{4} + 4\beta_{3} + 11\beta_{2} + 39\beta _1 + 20 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.71210
2.29226
−0.306558
−0.481965
−1.81030
−2.40554
0 −2.71210 0 0 0 −0.0156607 0 4.35547 0
1.2 0 −2.29226 0 0 0 0.938845 0 2.25447 0
1.3 0 0.306558 0 0 0 2.60656 0 −2.90602 0
1.4 0 0.481965 0 0 0 −2.69841 0 −2.76771 0
1.5 0 1.81030 0 0 0 4.37760 0 0.277175 0
1.6 0 2.40554 0 0 0 −2.20893 0 2.78662 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.a.n yes 6
4.b odd 2 1 4000.2.a.k 6
5.b even 2 1 4000.2.a.l yes 6
5.c odd 4 2 4000.2.c.g 12
8.b even 2 1 8000.2.a.bw 6
8.d odd 2 1 8000.2.a.bv 6
20.d odd 2 1 4000.2.a.m yes 6
20.e even 4 2 4000.2.c.f 12
40.e odd 2 1 8000.2.a.bx 6
40.f even 2 1 8000.2.a.bu 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.k 6 4.b odd 2 1
4000.2.a.l yes 6 5.b even 2 1
4000.2.a.m yes 6 20.d odd 2 1
4000.2.a.n yes 6 1.a even 1 1 trivial
4000.2.c.f 12 20.e even 4 2
4000.2.c.g 12 5.c odd 4 2
8000.2.a.bu 6 40.f even 2 1
8000.2.a.bv 6 8.d odd 2 1
8000.2.a.bw 6 8.b even 2 1
8000.2.a.bx 6 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4000))S_{2}^{\mathrm{new}}(\Gamma_0(4000)):

T3611T34+4T33+29T3222T3+4 T_{3}^{6} - 11T_{3}^{4} + 4T_{3}^{3} + 29T_{3}^{2} - 22T_{3} + 4 Copy content Toggle raw display
T763T7515T74+30T73+55T7263T71 T_{7}^{6} - 3T_{7}^{5} - 15T_{7}^{4} + 30T_{7}^{3} + 55T_{7}^{2} - 63T_{7} - 1 Copy content Toggle raw display
T11613T115+41T114+50T113325T112+375T11125 T_{11}^{6} - 13T_{11}^{5} + 41T_{11}^{4} + 50T_{11}^{3} - 325T_{11}^{2} + 375T_{11} - 125 Copy content Toggle raw display
T1367T13534T134+245T133+150T1321375T13+625 T_{13}^{6} - 7T_{13}^{5} - 34T_{13}^{4} + 245T_{13}^{3} + 150T_{13}^{2} - 1375T_{13} + 625 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T611T4++4 T^{6} - 11 T^{4} + \cdots + 4 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T63T5+1 T^{6} - 3 T^{5} + \cdots - 1 Copy content Toggle raw display
1111 T613T5+125 T^{6} - 13 T^{5} + \cdots - 125 Copy content Toggle raw display
1313 T67T5++625 T^{6} - 7 T^{5} + \cdots + 625 Copy content Toggle raw display
1717 T6+4T5++2000 T^{6} + 4 T^{5} + \cdots + 2000 Copy content Toggle raw display
1919 T69T5++125 T^{6} - 9 T^{5} + \cdots + 125 Copy content Toggle raw display
2323 T67T5+64 T^{6} - 7 T^{5} + \cdots - 64 Copy content Toggle raw display
2929 T62T5+2636 T^{6} - 2 T^{5} + \cdots - 2636 Copy content Toggle raw display
3131 T612T5+29500 T^{6} - 12 T^{5} + \cdots - 29500 Copy content Toggle raw display
3737 T621T5+8000 T^{6} - 21 T^{5} + \cdots - 8000 Copy content Toggle raw display
4141 T6+5T5++10475 T^{6} + 5 T^{5} + \cdots + 10475 Copy content Toggle raw display
4343 T6+8T5+24256 T^{6} + 8 T^{5} + \cdots - 24256 Copy content Toggle raw display
4747 T619T5++2549 T^{6} - 19 T^{5} + \cdots + 2549 Copy content Toggle raw display
5353 T611T5+9875 T^{6} - 11 T^{5} + \cdots - 9875 Copy content Toggle raw display
5959 T625T5+59375 T^{6} - 25 T^{5} + \cdots - 59375 Copy content Toggle raw display
6161 T6+6T5+32220 T^{6} + 6 T^{5} + \cdots - 32220 Copy content Toggle raw display
6767 T6159T4+5364 T^{6} - 159 T^{4} + \cdots - 5364 Copy content Toggle raw display
7171 T634T5+372500 T^{6} - 34 T^{5} + \cdots - 372500 Copy content Toggle raw display
7373 T6+20T5++2500 T^{6} + 20 T^{5} + \cdots + 2500 Copy content Toggle raw display
7979 T616T5++174500 T^{6} - 16 T^{5} + \cdots + 174500 Copy content Toggle raw display
8383 T6+4T5+46080 T^{6} + 4 T^{5} + \cdots - 46080 Copy content Toggle raw display
8989 T6+3T5+142144 T^{6} + 3 T^{5} + \cdots - 142144 Copy content Toggle raw display
9797 T6+20T5++177500 T^{6} + 20 T^{5} + \cdots + 177500 Copy content Toggle raw display
show more
show less