Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4000,2,Mod(1,4000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4000.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4000.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.6.30040000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.71210 | 0 | 0 | 0 | −0.0156607 | 0 | 4.35547 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | 0 | −2.29226 | 0 | 0 | 0 | 0.938845 | 0 | 2.25447 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | 0 | 0.306558 | 0 | 0 | 0 | 2.60656 | 0 | −2.90602 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0 | 0.481965 | 0 | 0 | 0 | −2.69841 | 0 | −2.76771 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 0 | 1.81030 | 0 | 0 | 0 | 4.37760 | 0 | 0.277175 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 0 | 2.40554 | 0 | 0 | 0 | −2.20893 | 0 | 2.78662 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4000.2.a.n | yes | 6 |
4.b | odd | 2 | 1 | 4000.2.a.k | ✓ | 6 | |
5.b | even | 2 | 1 | 4000.2.a.l | yes | 6 | |
5.c | odd | 4 | 2 | 4000.2.c.g | 12 | ||
8.b | even | 2 | 1 | 8000.2.a.bw | 6 | ||
8.d | odd | 2 | 1 | 8000.2.a.bv | 6 | ||
20.d | odd | 2 | 1 | 4000.2.a.m | yes | 6 | |
20.e | even | 4 | 2 | 4000.2.c.f | 12 | ||
40.e | odd | 2 | 1 | 8000.2.a.bx | 6 | ||
40.f | even | 2 | 1 | 8000.2.a.bu | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4000.2.a.k | ✓ | 6 | 4.b | odd | 2 | 1 | |
4000.2.a.l | yes | 6 | 5.b | even | 2 | 1 | |
4000.2.a.m | yes | 6 | 20.d | odd | 2 | 1 | |
4000.2.a.n | yes | 6 | 1.a | even | 1 | 1 | trivial |
4000.2.c.f | 12 | 20.e | even | 4 | 2 | ||
4000.2.c.g | 12 | 5.c | odd | 4 | 2 | ||
8000.2.a.bu | 6 | 40.f | even | 2 | 1 | ||
8000.2.a.bv | 6 | 8.d | odd | 2 | 1 | ||
8000.2.a.bw | 6 | 8.b | even | 2 | 1 | ||
8000.2.a.bx | 6 | 40.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|