L(s) = 1 | − 2.29·3-s + 0.938·7-s + 2.25·9-s + 1.16·11-s + 2.31·13-s − 6.64·17-s + 5.70·19-s − 2.15·21-s + 1.63·23-s + 1.70·27-s − 1.93·29-s + 4.77·31-s − 2.66·33-s − 8.06·37-s − 5.31·39-s + 4.70·41-s + 3.78·43-s − 1.00·47-s − 6.11·49-s + 15.2·51-s + 4.99·53-s − 13.0·57-s + 5.79·59-s − 2.55·61-s + 2.11·63-s − 11.9·67-s − 3.75·69-s + ⋯ |
L(s) = 1 | − 1.32·3-s + 0.354·7-s + 0.751·9-s + 0.350·11-s + 0.642·13-s − 1.61·17-s + 1.30·19-s − 0.469·21-s + 0.341·23-s + 0.328·27-s − 0.359·29-s + 0.857·31-s − 0.464·33-s − 1.32·37-s − 0.850·39-s + 0.734·41-s + 0.577·43-s − 0.146·47-s − 0.874·49-s + 2.13·51-s + 0.685·53-s − 1.73·57-s + 0.753·59-s − 0.327·61-s + 0.266·63-s − 1.45·67-s − 0.451·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.119385430 |
L(21) |
≈ |
1.119385430 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.29T+3T2 |
| 7 | 1−0.938T+7T2 |
| 11 | 1−1.16T+11T2 |
| 13 | 1−2.31T+13T2 |
| 17 | 1+6.64T+17T2 |
| 19 | 1−5.70T+19T2 |
| 23 | 1−1.63T+23T2 |
| 29 | 1+1.93T+29T2 |
| 31 | 1−4.77T+31T2 |
| 37 | 1+8.06T+37T2 |
| 41 | 1−4.70T+41T2 |
| 43 | 1−3.78T+43T2 |
| 47 | 1+1.00T+47T2 |
| 53 | 1−4.99T+53T2 |
| 59 | 1−5.79T+59T2 |
| 61 | 1+2.55T+61T2 |
| 67 | 1+11.9T+67T2 |
| 71 | 1−3.85T+71T2 |
| 73 | 1−0.210T+73T2 |
| 79 | 1+14.6T+79T2 |
| 83 | 1−5.62T+83T2 |
| 89 | 1−10.8T+89T2 |
| 97 | 1+14.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.570675723822496990597371436187, −7.52525679430210814515224531425, −6.81689232367689618844061990005, −6.21315727204093365589448252854, −5.49786852370569522001052843925, −4.81139319309716281495186953591, −4.10198971501455955248780041584, −2.98662624847037361550114663755, −1.70145751572325419520680964013, −0.67003489901495107121056442664,
0.67003489901495107121056442664, 1.70145751572325419520680964013, 2.98662624847037361550114663755, 4.10198971501455955248780041584, 4.81139319309716281495186953591, 5.49786852370569522001052843925, 6.21315727204093365589448252854, 6.81689232367689618844061990005, 7.52525679430210814515224531425, 8.570675723822496990597371436187