Properties

Label 4000.2.a.n.1.2
Level $4000$
Weight $2$
Character 4000.1
Self dual yes
Analytic conductor $31.940$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.30040000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 11x^{4} - 4x^{3} + 29x^{2} + 22x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.29226\) of defining polynomial
Character \(\chi\) \(=\) 4000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.29226 q^{3} +0.938845 q^{7} +2.25447 q^{9} +1.16354 q^{11} +2.31775 q^{13} -6.64261 q^{17} +5.70400 q^{19} -2.15208 q^{21} +1.63643 q^{23} +1.70896 q^{27} -1.93578 q^{29} +4.77507 q^{31} -2.66714 q^{33} -8.06572 q^{37} -5.31288 q^{39} +4.70589 q^{41} +3.78455 q^{43} -1.00641 q^{47} -6.11857 q^{49} +15.2266 q^{51} +4.99066 q^{53} -13.0751 q^{57} +5.79026 q^{59} -2.55900 q^{61} +2.11659 q^{63} -11.9484 q^{67} -3.75113 q^{69} +3.85157 q^{71} +0.210168 q^{73} +1.09239 q^{77} -14.6372 q^{79} -10.6808 q^{81} +5.62269 q^{83} +4.43731 q^{87} +10.8029 q^{89} +2.17600 q^{91} -10.9457 q^{93} -14.5133 q^{97} +2.62317 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 4 q^{9} + 13 q^{11} + 7 q^{13} - 4 q^{17} + 9 q^{19} + 7 q^{23} - 12 q^{27} + 2 q^{29} + 12 q^{31} - 6 q^{33} + 21 q^{37} + 26 q^{39} - 5 q^{41} - 8 q^{43} + 19 q^{47} - 3 q^{49} + 18 q^{51}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.29226 −1.32344 −0.661719 0.749752i \(-0.730173\pi\)
−0.661719 + 0.749752i \(0.730173\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.938845 0.354850 0.177425 0.984134i \(-0.443223\pi\)
0.177425 + 0.984134i \(0.443223\pi\)
\(8\) 0 0
\(9\) 2.25447 0.751489
\(10\) 0 0
\(11\) 1.16354 0.350821 0.175411 0.984495i \(-0.443875\pi\)
0.175411 + 0.984495i \(0.443875\pi\)
\(12\) 0 0
\(13\) 2.31775 0.642827 0.321413 0.946939i \(-0.395842\pi\)
0.321413 + 0.946939i \(0.395842\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.64261 −1.61107 −0.805535 0.592548i \(-0.798122\pi\)
−0.805535 + 0.592548i \(0.798122\pi\)
\(18\) 0 0
\(19\) 5.70400 1.30859 0.654293 0.756241i \(-0.272966\pi\)
0.654293 + 0.756241i \(0.272966\pi\)
\(20\) 0 0
\(21\) −2.15208 −0.469622
\(22\) 0 0
\(23\) 1.63643 0.341220 0.170610 0.985339i \(-0.445426\pi\)
0.170610 + 0.985339i \(0.445426\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.70896 0.328889
\(28\) 0 0
\(29\) −1.93578 −0.359465 −0.179733 0.983716i \(-0.557523\pi\)
−0.179733 + 0.983716i \(0.557523\pi\)
\(30\) 0 0
\(31\) 4.77507 0.857629 0.428814 0.903393i \(-0.358931\pi\)
0.428814 + 0.903393i \(0.358931\pi\)
\(32\) 0 0
\(33\) −2.66714 −0.464290
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.06572 −1.32600 −0.662998 0.748621i \(-0.730716\pi\)
−0.662998 + 0.748621i \(0.730716\pi\)
\(38\) 0 0
\(39\) −5.31288 −0.850742
\(40\) 0 0
\(41\) 4.70589 0.734937 0.367468 0.930036i \(-0.380225\pi\)
0.367468 + 0.930036i \(0.380225\pi\)
\(42\) 0 0
\(43\) 3.78455 0.577138 0.288569 0.957459i \(-0.406820\pi\)
0.288569 + 0.957459i \(0.406820\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00641 −0.146800 −0.0734000 0.997303i \(-0.523385\pi\)
−0.0734000 + 0.997303i \(0.523385\pi\)
\(48\) 0 0
\(49\) −6.11857 −0.874081
\(50\) 0 0
\(51\) 15.2266 2.13215
\(52\) 0 0
\(53\) 4.99066 0.685520 0.342760 0.939423i \(-0.388638\pi\)
0.342760 + 0.939423i \(0.388638\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −13.0751 −1.73183
\(58\) 0 0
\(59\) 5.79026 0.753828 0.376914 0.926248i \(-0.376985\pi\)
0.376914 + 0.926248i \(0.376985\pi\)
\(60\) 0 0
\(61\) −2.55900 −0.327647 −0.163823 0.986490i \(-0.552383\pi\)
−0.163823 + 0.986490i \(0.552383\pi\)
\(62\) 0 0
\(63\) 2.11659 0.266666
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.9484 −1.45973 −0.729863 0.683594i \(-0.760416\pi\)
−0.729863 + 0.683594i \(0.760416\pi\)
\(68\) 0 0
\(69\) −3.75113 −0.451583
\(70\) 0 0
\(71\) 3.85157 0.457097 0.228549 0.973533i \(-0.426602\pi\)
0.228549 + 0.973533i \(0.426602\pi\)
\(72\) 0 0
\(73\) 0.210168 0.0245983 0.0122992 0.999924i \(-0.496085\pi\)
0.0122992 + 0.999924i \(0.496085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.09239 0.124489
\(78\) 0 0
\(79\) −14.6372 −1.64681 −0.823406 0.567453i \(-0.807929\pi\)
−0.823406 + 0.567453i \(0.807929\pi\)
\(80\) 0 0
\(81\) −10.6808 −1.18675
\(82\) 0 0
\(83\) 5.62269 0.617171 0.308585 0.951197i \(-0.400144\pi\)
0.308585 + 0.951197i \(0.400144\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.43731 0.475730
\(88\) 0 0
\(89\) 10.8029 1.14510 0.572550 0.819870i \(-0.305954\pi\)
0.572550 + 0.819870i \(0.305954\pi\)
\(90\) 0 0
\(91\) 2.17600 0.228107
\(92\) 0 0
\(93\) −10.9457 −1.13502
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.5133 −1.47360 −0.736800 0.676111i \(-0.763664\pi\)
−0.736800 + 0.676111i \(0.763664\pi\)
\(98\) 0 0
\(99\) 2.62317 0.263638
\(100\) 0 0
\(101\) 14.2528 1.41820 0.709101 0.705107i \(-0.249101\pi\)
0.709101 + 0.705107i \(0.249101\pi\)
\(102\) 0 0
\(103\) −14.2141 −1.40055 −0.700277 0.713871i \(-0.746940\pi\)
−0.700277 + 0.713871i \(0.746940\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6763 1.03211 0.516057 0.856555i \(-0.327399\pi\)
0.516057 + 0.856555i \(0.327399\pi\)
\(108\) 0 0
\(109\) 18.7091 1.79201 0.896004 0.444045i \(-0.146457\pi\)
0.896004 + 0.444045i \(0.146457\pi\)
\(110\) 0 0
\(111\) 18.4887 1.75487
\(112\) 0 0
\(113\) 3.44534 0.324110 0.162055 0.986782i \(-0.448188\pi\)
0.162055 + 0.986782i \(0.448188\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.22528 0.483077
\(118\) 0 0
\(119\) −6.23639 −0.571689
\(120\) 0 0
\(121\) −9.64617 −0.876925
\(122\) 0 0
\(123\) −10.7871 −0.972644
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.1918 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(128\) 0 0
\(129\) −8.67518 −0.763807
\(130\) 0 0
\(131\) 16.4764 1.43955 0.719776 0.694207i \(-0.244245\pi\)
0.719776 + 0.694207i \(0.244245\pi\)
\(132\) 0 0
\(133\) 5.35517 0.464352
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.370281 −0.0316353 −0.0158176 0.999875i \(-0.505035\pi\)
−0.0158176 + 0.999875i \(0.505035\pi\)
\(138\) 0 0
\(139\) 7.37956 0.625926 0.312963 0.949765i \(-0.398678\pi\)
0.312963 + 0.949765i \(0.398678\pi\)
\(140\) 0 0
\(141\) 2.30696 0.194281
\(142\) 0 0
\(143\) 2.69679 0.225517
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.0254 1.15679
\(148\) 0 0
\(149\) −13.4478 −1.10169 −0.550843 0.834609i \(-0.685694\pi\)
−0.550843 + 0.834609i \(0.685694\pi\)
\(150\) 0 0
\(151\) 8.54038 0.695006 0.347503 0.937679i \(-0.387030\pi\)
0.347503 + 0.937679i \(0.387030\pi\)
\(152\) 0 0
\(153\) −14.9756 −1.21070
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.5204 1.31847 0.659236 0.751936i \(-0.270880\pi\)
0.659236 + 0.751936i \(0.270880\pi\)
\(158\) 0 0
\(159\) −11.4399 −0.907243
\(160\) 0 0
\(161\) 1.53636 0.121082
\(162\) 0 0
\(163\) 0.480836 0.0376620 0.0188310 0.999823i \(-0.494006\pi\)
0.0188310 + 0.999823i \(0.494006\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.302600 −0.0234159 −0.0117079 0.999931i \(-0.503727\pi\)
−0.0117079 + 0.999931i \(0.503727\pi\)
\(168\) 0 0
\(169\) −7.62806 −0.586774
\(170\) 0 0
\(171\) 12.8595 0.983388
\(172\) 0 0
\(173\) −7.06564 −0.537191 −0.268595 0.963253i \(-0.586559\pi\)
−0.268595 + 0.963253i \(0.586559\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −13.2728 −0.997645
\(178\) 0 0
\(179\) 24.2142 1.80985 0.904925 0.425570i \(-0.139927\pi\)
0.904925 + 0.425570i \(0.139927\pi\)
\(180\) 0 0
\(181\) −8.31698 −0.618196 −0.309098 0.951030i \(-0.600027\pi\)
−0.309098 + 0.951030i \(0.600027\pi\)
\(182\) 0 0
\(183\) 5.86591 0.433620
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.72896 −0.565198
\(188\) 0 0
\(189\) 1.60445 0.116706
\(190\) 0 0
\(191\) 23.2852 1.68486 0.842430 0.538806i \(-0.181124\pi\)
0.842430 + 0.538806i \(0.181124\pi\)
\(192\) 0 0
\(193\) 20.6634 1.48738 0.743692 0.668523i \(-0.233073\pi\)
0.743692 + 0.668523i \(0.233073\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.9457 1.49232 0.746160 0.665766i \(-0.231895\pi\)
0.746160 + 0.665766i \(0.231895\pi\)
\(198\) 0 0
\(199\) −4.74212 −0.336160 −0.168080 0.985773i \(-0.553757\pi\)
−0.168080 + 0.985773i \(0.553757\pi\)
\(200\) 0 0
\(201\) 27.3888 1.93186
\(202\) 0 0
\(203\) −1.81740 −0.127556
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.68928 0.256423
\(208\) 0 0
\(209\) 6.63684 0.459080
\(210\) 0 0
\(211\) 11.1218 0.765658 0.382829 0.923819i \(-0.374950\pi\)
0.382829 + 0.923819i \(0.374950\pi\)
\(212\) 0 0
\(213\) −8.82881 −0.604940
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.48305 0.304330
\(218\) 0 0
\(219\) −0.481761 −0.0325544
\(220\) 0 0
\(221\) −15.3959 −1.03564
\(222\) 0 0
\(223\) 12.9371 0.866331 0.433165 0.901314i \(-0.357397\pi\)
0.433165 + 0.901314i \(0.357397\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.04921 −0.0696385 −0.0348192 0.999394i \(-0.511086\pi\)
−0.0348192 + 0.999394i \(0.511086\pi\)
\(228\) 0 0
\(229\) 1.86118 0.122990 0.0614950 0.998107i \(-0.480413\pi\)
0.0614950 + 0.998107i \(0.480413\pi\)
\(230\) 0 0
\(231\) −2.50403 −0.164753
\(232\) 0 0
\(233\) 13.2426 0.867551 0.433775 0.901021i \(-0.357181\pi\)
0.433775 + 0.901021i \(0.357181\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 33.5523 2.17945
\(238\) 0 0
\(239\) 11.1272 0.719761 0.359881 0.932998i \(-0.382817\pi\)
0.359881 + 0.932998i \(0.382817\pi\)
\(240\) 0 0
\(241\) 22.4775 1.44790 0.723952 0.689851i \(-0.242324\pi\)
0.723952 + 0.689851i \(0.242324\pi\)
\(242\) 0 0
\(243\) 19.3563 1.24171
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.2204 0.841195
\(248\) 0 0
\(249\) −12.8887 −0.816787
\(250\) 0 0
\(251\) −14.3075 −0.903083 −0.451541 0.892250i \(-0.649126\pi\)
−0.451541 + 0.892250i \(0.649126\pi\)
\(252\) 0 0
\(253\) 1.90406 0.119707
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.19735 0.261824 0.130912 0.991394i \(-0.458210\pi\)
0.130912 + 0.991394i \(0.458210\pi\)
\(258\) 0 0
\(259\) −7.57246 −0.470530
\(260\) 0 0
\(261\) −4.36415 −0.270134
\(262\) 0 0
\(263\) 24.1436 1.48876 0.744381 0.667756i \(-0.232745\pi\)
0.744381 + 0.667756i \(0.232745\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.7630 −1.51547
\(268\) 0 0
\(269\) −17.4093 −1.06146 −0.530731 0.847540i \(-0.678082\pi\)
−0.530731 + 0.847540i \(0.678082\pi\)
\(270\) 0 0
\(271\) 29.2397 1.77619 0.888093 0.459664i \(-0.152030\pi\)
0.888093 + 0.459664i \(0.152030\pi\)
\(272\) 0 0
\(273\) −4.98797 −0.301886
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.2027 1.51429 0.757143 0.653249i \(-0.226595\pi\)
0.757143 + 0.653249i \(0.226595\pi\)
\(278\) 0 0
\(279\) 10.7652 0.644498
\(280\) 0 0
\(281\) −31.1148 −1.85615 −0.928077 0.372388i \(-0.878539\pi\)
−0.928077 + 0.372388i \(0.878539\pi\)
\(282\) 0 0
\(283\) −10.2160 −0.607279 −0.303640 0.952787i \(-0.598202\pi\)
−0.303640 + 0.952787i \(0.598202\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.41810 0.260792
\(288\) 0 0
\(289\) 27.1243 1.59555
\(290\) 0 0
\(291\) 33.2682 1.95022
\(292\) 0 0
\(293\) 12.6454 0.738751 0.369376 0.929280i \(-0.379572\pi\)
0.369376 + 0.929280i \(0.379572\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.98845 0.115381
\(298\) 0 0
\(299\) 3.79283 0.219345
\(300\) 0 0
\(301\) 3.55311 0.204798
\(302\) 0 0
\(303\) −32.6711 −1.87690
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.14322 0.521831 0.260915 0.965362i \(-0.415976\pi\)
0.260915 + 0.965362i \(0.415976\pi\)
\(308\) 0 0
\(309\) 32.5824 1.85355
\(310\) 0 0
\(311\) −13.2336 −0.750409 −0.375204 0.926942i \(-0.622427\pi\)
−0.375204 + 0.926942i \(0.622427\pi\)
\(312\) 0 0
\(313\) −15.3458 −0.867398 −0.433699 0.901058i \(-0.642792\pi\)
−0.433699 + 0.901058i \(0.642792\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.0301 1.34967 0.674833 0.737970i \(-0.264216\pi\)
0.674833 + 0.737970i \(0.264216\pi\)
\(318\) 0 0
\(319\) −2.25236 −0.126108
\(320\) 0 0
\(321\) −24.4728 −1.36594
\(322\) 0 0
\(323\) −37.8895 −2.10823
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −42.8862 −2.37161
\(328\) 0 0
\(329\) −0.944863 −0.0520920
\(330\) 0 0
\(331\) −14.7449 −0.810450 −0.405225 0.914217i \(-0.632807\pi\)
−0.405225 + 0.914217i \(0.632807\pi\)
\(332\) 0 0
\(333\) −18.1839 −0.996471
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.52428 −0.246453 −0.123227 0.992379i \(-0.539324\pi\)
−0.123227 + 0.992379i \(0.539324\pi\)
\(338\) 0 0
\(339\) −7.89762 −0.428940
\(340\) 0 0
\(341\) 5.55600 0.300874
\(342\) 0 0
\(343\) −12.3163 −0.665018
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.4436 0.721690 0.360845 0.932626i \(-0.382488\pi\)
0.360845 + 0.932626i \(0.382488\pi\)
\(348\) 0 0
\(349\) −27.4939 −1.47171 −0.735857 0.677137i \(-0.763221\pi\)
−0.735857 + 0.677137i \(0.763221\pi\)
\(350\) 0 0
\(351\) 3.96093 0.211419
\(352\) 0 0
\(353\) 30.0034 1.59692 0.798459 0.602049i \(-0.205649\pi\)
0.798459 + 0.602049i \(0.205649\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 14.2954 0.756594
\(358\) 0 0
\(359\) 16.1270 0.851152 0.425576 0.904923i \(-0.360072\pi\)
0.425576 + 0.904923i \(0.360072\pi\)
\(360\) 0 0
\(361\) 13.5356 0.712400
\(362\) 0 0
\(363\) 22.1116 1.16056
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 20.7892 1.08519 0.542594 0.839995i \(-0.317442\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(368\) 0 0
\(369\) 10.6093 0.552297
\(370\) 0 0
\(371\) 4.68546 0.243257
\(372\) 0 0
\(373\) 34.9061 1.80737 0.903684 0.428200i \(-0.140852\pi\)
0.903684 + 0.428200i \(0.140852\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.48664 −0.231074
\(378\) 0 0
\(379\) −26.4479 −1.35854 −0.679268 0.733890i \(-0.737703\pi\)
−0.679268 + 0.733890i \(0.737703\pi\)
\(380\) 0 0
\(381\) 23.3622 1.19688
\(382\) 0 0
\(383\) −17.3746 −0.887802 −0.443901 0.896076i \(-0.646406\pi\)
−0.443901 + 0.896076i \(0.646406\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.53214 0.433713
\(388\) 0 0
\(389\) 6.13991 0.311306 0.155653 0.987812i \(-0.450252\pi\)
0.155653 + 0.987812i \(0.450252\pi\)
\(390\) 0 0
\(391\) −10.8702 −0.549729
\(392\) 0 0
\(393\) −37.7683 −1.90516
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.21943 0.211767 0.105883 0.994379i \(-0.466233\pi\)
0.105883 + 0.994379i \(0.466233\pi\)
\(398\) 0 0
\(399\) −12.2755 −0.614541
\(400\) 0 0
\(401\) 17.5061 0.874213 0.437107 0.899410i \(-0.356003\pi\)
0.437107 + 0.899410i \(0.356003\pi\)
\(402\) 0 0
\(403\) 11.0674 0.551307
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.38481 −0.465188
\(408\) 0 0
\(409\) −5.44224 −0.269101 −0.134551 0.990907i \(-0.542959\pi\)
−0.134551 + 0.990907i \(0.542959\pi\)
\(410\) 0 0
\(411\) 0.848782 0.0418673
\(412\) 0 0
\(413\) 5.43616 0.267496
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.9159 −0.828375
\(418\) 0 0
\(419\) −23.1501 −1.13095 −0.565477 0.824764i \(-0.691308\pi\)
−0.565477 + 0.824764i \(0.691308\pi\)
\(420\) 0 0
\(421\) −10.5558 −0.514460 −0.257230 0.966350i \(-0.582810\pi\)
−0.257230 + 0.966350i \(0.582810\pi\)
\(422\) 0 0
\(423\) −2.26892 −0.110319
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.40251 −0.116265
\(428\) 0 0
\(429\) −6.18176 −0.298458
\(430\) 0 0
\(431\) 31.9502 1.53899 0.769494 0.638654i \(-0.220509\pi\)
0.769494 + 0.638654i \(0.220509\pi\)
\(432\) 0 0
\(433\) −10.2586 −0.492999 −0.246499 0.969143i \(-0.579280\pi\)
−0.246499 + 0.969143i \(0.579280\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.33421 0.446516
\(438\) 0 0
\(439\) −7.16631 −0.342029 −0.171015 0.985268i \(-0.554705\pi\)
−0.171015 + 0.985268i \(0.554705\pi\)
\(440\) 0 0
\(441\) −13.7941 −0.656862
\(442\) 0 0
\(443\) 33.0084 1.56828 0.784139 0.620585i \(-0.213105\pi\)
0.784139 + 0.620585i \(0.213105\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 30.8258 1.45801
\(448\) 0 0
\(449\) −18.6955 −0.882296 −0.441148 0.897434i \(-0.645429\pi\)
−0.441148 + 0.897434i \(0.645429\pi\)
\(450\) 0 0
\(451\) 5.47550 0.257831
\(452\) 0 0
\(453\) −19.5768 −0.919797
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.12807 −0.286659 −0.143329 0.989675i \(-0.545781\pi\)
−0.143329 + 0.989675i \(0.545781\pi\)
\(458\) 0 0
\(459\) −11.3520 −0.529864
\(460\) 0 0
\(461\) −8.95725 −0.417181 −0.208590 0.978003i \(-0.566888\pi\)
−0.208590 + 0.978003i \(0.566888\pi\)
\(462\) 0 0
\(463\) 38.1802 1.77439 0.887193 0.461399i \(-0.152652\pi\)
0.887193 + 0.461399i \(0.152652\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −39.9615 −1.84920 −0.924599 0.380942i \(-0.875600\pi\)
−0.924599 + 0.380942i \(0.875600\pi\)
\(468\) 0 0
\(469\) −11.2177 −0.517984
\(470\) 0 0
\(471\) −37.8691 −1.74492
\(472\) 0 0
\(473\) 4.40348 0.202472
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11.2513 0.515161
\(478\) 0 0
\(479\) 37.0193 1.69145 0.845727 0.533616i \(-0.179167\pi\)
0.845727 + 0.533616i \(0.179167\pi\)
\(480\) 0 0
\(481\) −18.6943 −0.852386
\(482\) 0 0
\(483\) −3.52173 −0.160244
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 33.1512 1.50222 0.751111 0.660176i \(-0.229518\pi\)
0.751111 + 0.660176i \(0.229518\pi\)
\(488\) 0 0
\(489\) −1.10220 −0.0498434
\(490\) 0 0
\(491\) −35.7953 −1.61542 −0.807710 0.589580i \(-0.799293\pi\)
−0.807710 + 0.589580i \(0.799293\pi\)
\(492\) 0 0
\(493\) 12.8586 0.579124
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.61603 0.162201
\(498\) 0 0
\(499\) 2.48527 0.111256 0.0556280 0.998452i \(-0.482284\pi\)
0.0556280 + 0.998452i \(0.482284\pi\)
\(500\) 0 0
\(501\) 0.693639 0.0309895
\(502\) 0 0
\(503\) −24.0846 −1.07388 −0.536940 0.843621i \(-0.680420\pi\)
−0.536940 + 0.843621i \(0.680420\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 17.4855 0.776559
\(508\) 0 0
\(509\) 10.3413 0.458371 0.229186 0.973383i \(-0.426394\pi\)
0.229186 + 0.973383i \(0.426394\pi\)
\(510\) 0 0
\(511\) 0.197316 0.00872872
\(512\) 0 0
\(513\) 9.74789 0.430380
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.17100 −0.0515006
\(518\) 0 0
\(519\) 16.1963 0.710939
\(520\) 0 0
\(521\) −13.8975 −0.608861 −0.304430 0.952535i \(-0.598466\pi\)
−0.304430 + 0.952535i \(0.598466\pi\)
\(522\) 0 0
\(523\) −21.7256 −0.949996 −0.474998 0.879987i \(-0.657551\pi\)
−0.474998 + 0.879987i \(0.657551\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −31.7190 −1.38170
\(528\) 0 0
\(529\) −20.3221 −0.883569
\(530\) 0 0
\(531\) 13.0540 0.566494
\(532\) 0 0
\(533\) 10.9071 0.472437
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −55.5052 −2.39523
\(538\) 0 0
\(539\) −7.11921 −0.306646
\(540\) 0 0
\(541\) 27.3452 1.17566 0.587832 0.808983i \(-0.299982\pi\)
0.587832 + 0.808983i \(0.299982\pi\)
\(542\) 0 0
\(543\) 19.0647 0.818144
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 42.2665 1.80718 0.903592 0.428395i \(-0.140921\pi\)
0.903592 + 0.428395i \(0.140921\pi\)
\(548\) 0 0
\(549\) −5.76919 −0.246223
\(550\) 0 0
\(551\) −11.0417 −0.470391
\(552\) 0 0
\(553\) −13.7420 −0.584371
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17.2746 −0.731949 −0.365975 0.930625i \(-0.619264\pi\)
−0.365975 + 0.930625i \(0.619264\pi\)
\(558\) 0 0
\(559\) 8.77162 0.371000
\(560\) 0 0
\(561\) 17.7168 0.748004
\(562\) 0 0
\(563\) 10.8603 0.457707 0.228854 0.973461i \(-0.426502\pi\)
0.228854 + 0.973461i \(0.426502\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.0276 −0.421120
\(568\) 0 0
\(569\) 11.6982 0.490412 0.245206 0.969471i \(-0.421144\pi\)
0.245206 + 0.969471i \(0.421144\pi\)
\(570\) 0 0
\(571\) −25.0311 −1.04752 −0.523760 0.851866i \(-0.675471\pi\)
−0.523760 + 0.851866i \(0.675471\pi\)
\(572\) 0 0
\(573\) −53.3758 −2.22981
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −29.9471 −1.24671 −0.623356 0.781938i \(-0.714231\pi\)
−0.623356 + 0.781938i \(0.714231\pi\)
\(578\) 0 0
\(579\) −47.3659 −1.96846
\(580\) 0 0
\(581\) 5.27884 0.219003
\(582\) 0 0
\(583\) 5.80684 0.240495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.1618 −1.07981 −0.539907 0.841725i \(-0.681541\pi\)
−0.539907 + 0.841725i \(0.681541\pi\)
\(588\) 0 0
\(589\) 27.2370 1.12228
\(590\) 0 0
\(591\) −48.0131 −1.97499
\(592\) 0 0
\(593\) −2.94588 −0.120973 −0.0604864 0.998169i \(-0.519265\pi\)
−0.0604864 + 0.998169i \(0.519265\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.8702 0.444887
\(598\) 0 0
\(599\) 35.0432 1.43183 0.715914 0.698188i \(-0.246010\pi\)
0.715914 + 0.698188i \(0.246010\pi\)
\(600\) 0 0
\(601\) 20.0077 0.816133 0.408066 0.912952i \(-0.366203\pi\)
0.408066 + 0.912952i \(0.366203\pi\)
\(602\) 0 0
\(603\) −26.9372 −1.09697
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −27.6672 −1.12298 −0.561488 0.827485i \(-0.689771\pi\)
−0.561488 + 0.827485i \(0.689771\pi\)
\(608\) 0 0
\(609\) 4.16595 0.168813
\(610\) 0 0
\(611\) −2.33260 −0.0943670
\(612\) 0 0
\(613\) 42.7038 1.72479 0.862396 0.506235i \(-0.168963\pi\)
0.862396 + 0.506235i \(0.168963\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.3048 −1.30054 −0.650271 0.759702i \(-0.725345\pi\)
−0.650271 + 0.759702i \(0.725345\pi\)
\(618\) 0 0
\(619\) 1.54036 0.0619122 0.0309561 0.999521i \(-0.490145\pi\)
0.0309561 + 0.999521i \(0.490145\pi\)
\(620\) 0 0
\(621\) 2.79659 0.112223
\(622\) 0 0
\(623\) 10.1422 0.406339
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −15.2134 −0.607564
\(628\) 0 0
\(629\) 53.5775 2.13627
\(630\) 0 0
\(631\) −25.5501 −1.01713 −0.508567 0.861022i \(-0.669825\pi\)
−0.508567 + 0.861022i \(0.669825\pi\)
\(632\) 0 0
\(633\) −25.4941 −1.01330
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −14.1813 −0.561883
\(638\) 0 0
\(639\) 8.68323 0.343503
\(640\) 0 0
\(641\) 9.48742 0.374731 0.187365 0.982290i \(-0.440005\pi\)
0.187365 + 0.982290i \(0.440005\pi\)
\(642\) 0 0
\(643\) 14.6234 0.576689 0.288345 0.957527i \(-0.406895\pi\)
0.288345 + 0.957527i \(0.406895\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.1841 0.990090 0.495045 0.868867i \(-0.335152\pi\)
0.495045 + 0.868867i \(0.335152\pi\)
\(648\) 0 0
\(649\) 6.73722 0.264459
\(650\) 0 0
\(651\) −10.2763 −0.402761
\(652\) 0 0
\(653\) −11.0960 −0.434218 −0.217109 0.976147i \(-0.569663\pi\)
−0.217109 + 0.976147i \(0.569663\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.473817 0.0184854
\(658\) 0 0
\(659\) 46.1162 1.79643 0.898216 0.439554i \(-0.144863\pi\)
0.898216 + 0.439554i \(0.144863\pi\)
\(660\) 0 0
\(661\) −13.6876 −0.532387 −0.266194 0.963920i \(-0.585766\pi\)
−0.266194 + 0.963920i \(0.585766\pi\)
\(662\) 0 0
\(663\) 35.2914 1.37060
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.16777 −0.122657
\(668\) 0 0
\(669\) −29.6552 −1.14654
\(670\) 0 0
\(671\) −2.97751 −0.114945
\(672\) 0 0
\(673\) 23.2918 0.897831 0.448916 0.893574i \(-0.351810\pi\)
0.448916 + 0.893574i \(0.351810\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.9928 −0.653085 −0.326543 0.945182i \(-0.605884\pi\)
−0.326543 + 0.945182i \(0.605884\pi\)
\(678\) 0 0
\(679\) −13.6257 −0.522907
\(680\) 0 0
\(681\) 2.40506 0.0921622
\(682\) 0 0
\(683\) −23.8721 −0.913442 −0.456721 0.889610i \(-0.650976\pi\)
−0.456721 + 0.889610i \(0.650976\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.26630 −0.162770
\(688\) 0 0
\(689\) 11.5671 0.440671
\(690\) 0 0
\(691\) −10.9306 −0.415821 −0.207910 0.978148i \(-0.566666\pi\)
−0.207910 + 0.978148i \(0.566666\pi\)
\(692\) 0 0
\(693\) 2.46275 0.0935520
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −31.2594 −1.18404
\(698\) 0 0
\(699\) −30.3555 −1.14815
\(700\) 0 0
\(701\) −42.6696 −1.61161 −0.805805 0.592181i \(-0.798267\pi\)
−0.805805 + 0.592181i \(0.798267\pi\)
\(702\) 0 0
\(703\) −46.0068 −1.73518
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.3811 0.503249
\(708\) 0 0
\(709\) −25.6653 −0.963879 −0.481940 0.876204i \(-0.660068\pi\)
−0.481940 + 0.876204i \(0.660068\pi\)
\(710\) 0 0
\(711\) −32.9990 −1.23756
\(712\) 0 0
\(713\) 7.81409 0.292640
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −25.5066 −0.952560
\(718\) 0 0
\(719\) 49.2112 1.83527 0.917634 0.397427i \(-0.130097\pi\)
0.917634 + 0.397427i \(0.130097\pi\)
\(720\) 0 0
\(721\) −13.3448 −0.496987
\(722\) 0 0
\(723\) −51.5243 −1.91621
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −45.5639 −1.68987 −0.844935 0.534869i \(-0.820361\pi\)
−0.844935 + 0.534869i \(0.820361\pi\)
\(728\) 0 0
\(729\) −12.3273 −0.456567
\(730\) 0 0
\(731\) −25.1393 −0.929811
\(732\) 0 0
\(733\) −6.36309 −0.235026 −0.117513 0.993071i \(-0.537492\pi\)
−0.117513 + 0.993071i \(0.537492\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.9024 −0.512103
\(738\) 0 0
\(739\) −35.8391 −1.31836 −0.659182 0.751984i \(-0.729097\pi\)
−0.659182 + 0.751984i \(0.729097\pi\)
\(740\) 0 0
\(741\) −30.3047 −1.11327
\(742\) 0 0
\(743\) −20.6753 −0.758504 −0.379252 0.925293i \(-0.623819\pi\)
−0.379252 + 0.925293i \(0.623819\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.6762 0.463797
\(748\) 0 0
\(749\) 10.0234 0.366245
\(750\) 0 0
\(751\) 22.1073 0.806708 0.403354 0.915044i \(-0.367844\pi\)
0.403354 + 0.915044i \(0.367844\pi\)
\(752\) 0 0
\(753\) 32.7966 1.19517
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.5874 −0.566533 −0.283267 0.959041i \(-0.591418\pi\)
−0.283267 + 0.959041i \(0.591418\pi\)
\(758\) 0 0
\(759\) −4.36460 −0.158425
\(760\) 0 0
\(761\) 18.1930 0.659496 0.329748 0.944069i \(-0.393036\pi\)
0.329748 + 0.944069i \(0.393036\pi\)
\(762\) 0 0
\(763\) 17.5650 0.635894
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.4204 0.484581
\(768\) 0 0
\(769\) 14.8828 0.536688 0.268344 0.963323i \(-0.413524\pi\)
0.268344 + 0.963323i \(0.413524\pi\)
\(770\) 0 0
\(771\) −9.62144 −0.346508
\(772\) 0 0
\(773\) 18.8096 0.676534 0.338267 0.941050i \(-0.390159\pi\)
0.338267 + 0.941050i \(0.390159\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 17.3581 0.622717
\(778\) 0 0
\(779\) 26.8424 0.961729
\(780\) 0 0
\(781\) 4.48146 0.160359
\(782\) 0 0
\(783\) −3.30817 −0.118224
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.811893 0.0289409 0.0144704 0.999895i \(-0.495394\pi\)
0.0144704 + 0.999895i \(0.495394\pi\)
\(788\) 0 0
\(789\) −55.3436 −1.97028
\(790\) 0 0
\(791\) 3.23464 0.115011
\(792\) 0 0
\(793\) −5.93112 −0.210620
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.3007 −1.49837 −0.749184 0.662362i \(-0.769554\pi\)
−0.749184 + 0.662362i \(0.769554\pi\)
\(798\) 0 0
\(799\) 6.68520 0.236505
\(800\) 0 0
\(801\) 24.3547 0.860530
\(802\) 0 0
\(803\) 0.244540 0.00862962
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 39.9066 1.40478
\(808\) 0 0
\(809\) −35.8115 −1.25906 −0.629532 0.776975i \(-0.716753\pi\)
−0.629532 + 0.776975i \(0.716753\pi\)
\(810\) 0 0
\(811\) −42.4255 −1.48976 −0.744881 0.667197i \(-0.767494\pi\)
−0.744881 + 0.667197i \(0.767494\pi\)
\(812\) 0 0
\(813\) −67.0251 −2.35067
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 21.5871 0.755236
\(818\) 0 0
\(819\) 4.90573 0.171420
\(820\) 0 0
\(821\) 39.6138 1.38253 0.691265 0.722601i \(-0.257054\pi\)
0.691265 + 0.722601i \(0.257054\pi\)
\(822\) 0 0
\(823\) −0.121605 −0.00423888 −0.00211944 0.999998i \(-0.500675\pi\)
−0.00211944 + 0.999998i \(0.500675\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.4621 0.502896 0.251448 0.967871i \(-0.419093\pi\)
0.251448 + 0.967871i \(0.419093\pi\)
\(828\) 0 0
\(829\) 14.1520 0.491518 0.245759 0.969331i \(-0.420963\pi\)
0.245759 + 0.969331i \(0.420963\pi\)
\(830\) 0 0
\(831\) −57.7713 −2.00406
\(832\) 0 0
\(833\) 40.6433 1.40821
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.16040 0.282065
\(838\) 0 0
\(839\) 7.39385 0.255264 0.127632 0.991822i \(-0.459262\pi\)
0.127632 + 0.991822i \(0.459262\pi\)
\(840\) 0 0
\(841\) −25.2528 −0.870785
\(842\) 0 0
\(843\) 71.3233 2.45651
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.05626 −0.311177
\(848\) 0 0
\(849\) 23.4178 0.803697
\(850\) 0 0
\(851\) −13.1990 −0.452456
\(852\) 0 0
\(853\) 30.9376 1.05928 0.529641 0.848222i \(-0.322327\pi\)
0.529641 + 0.848222i \(0.322327\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29.2166 −0.998021 −0.499010 0.866596i \(-0.666303\pi\)
−0.499010 + 0.866596i \(0.666303\pi\)
\(858\) 0 0
\(859\) −42.5991 −1.45346 −0.726731 0.686922i \(-0.758961\pi\)
−0.726731 + 0.686922i \(0.758961\pi\)
\(860\) 0 0
\(861\) −10.1275 −0.345143
\(862\) 0 0
\(863\) −0.0411558 −0.00140096 −0.000700480 1.00000i \(-0.500223\pi\)
−0.000700480 1.00000i \(0.500223\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −62.1760 −2.11161
\(868\) 0 0
\(869\) −17.0310 −0.577736
\(870\) 0 0
\(871\) −27.6933 −0.938351
\(872\) 0 0
\(873\) −32.7197 −1.10739
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.589083 0.0198919 0.00994595 0.999951i \(-0.496834\pi\)
0.00994595 + 0.999951i \(0.496834\pi\)
\(878\) 0 0
\(879\) −28.9865 −0.977692
\(880\) 0 0
\(881\) −0.394884 −0.0133040 −0.00665200 0.999978i \(-0.502117\pi\)
−0.00665200 + 0.999978i \(0.502117\pi\)
\(882\) 0 0
\(883\) 26.4128 0.888860 0.444430 0.895814i \(-0.353406\pi\)
0.444430 + 0.895814i \(0.353406\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.4493 0.988809 0.494405 0.869232i \(-0.335386\pi\)
0.494405 + 0.869232i \(0.335386\pi\)
\(888\) 0 0
\(889\) −9.56849 −0.320917
\(890\) 0 0
\(891\) −12.4275 −0.416338
\(892\) 0 0
\(893\) −5.74056 −0.192101
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −8.69417 −0.290290
\(898\) 0 0
\(899\) −9.24349 −0.308288
\(900\) 0 0
\(901\) −33.1510 −1.10442
\(902\) 0 0
\(903\) −8.14465 −0.271037
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 34.3520 1.14064 0.570319 0.821423i \(-0.306819\pi\)
0.570319 + 0.821423i \(0.306819\pi\)
\(908\) 0 0
\(909\) 32.1324 1.06576
\(910\) 0 0
\(911\) −2.10204 −0.0696437 −0.0348218 0.999394i \(-0.511086\pi\)
−0.0348218 + 0.999394i \(0.511086\pi\)
\(912\) 0 0
\(913\) 6.54224 0.216516
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.4688 0.510825
\(918\) 0 0
\(919\) −31.2470 −1.03074 −0.515372 0.856967i \(-0.672346\pi\)
−0.515372 + 0.856967i \(0.672346\pi\)
\(920\) 0 0
\(921\) −20.9586 −0.690611
\(922\) 0 0
\(923\) 8.92696 0.293834
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −32.0451 −1.05250
\(928\) 0 0
\(929\) −39.1073 −1.28307 −0.641535 0.767094i \(-0.721702\pi\)
−0.641535 + 0.767094i \(0.721702\pi\)
\(930\) 0 0
\(931\) −34.9003 −1.14381
\(932\) 0 0
\(933\) 30.3349 0.993119
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 43.9556 1.43597 0.717983 0.696060i \(-0.245065\pi\)
0.717983 + 0.696060i \(0.245065\pi\)
\(938\) 0 0
\(939\) 35.1767 1.14795
\(940\) 0 0
\(941\) 16.8894 0.550579 0.275290 0.961361i \(-0.411226\pi\)
0.275290 + 0.961361i \(0.411226\pi\)
\(942\) 0 0
\(943\) 7.70088 0.250775
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45.2730 1.47118 0.735588 0.677429i \(-0.236906\pi\)
0.735588 + 0.677429i \(0.236906\pi\)
\(948\) 0 0
\(949\) 0.487117 0.0158125
\(950\) 0 0
\(951\) −55.0833 −1.78620
\(952\) 0 0
\(953\) −23.2174 −0.752084 −0.376042 0.926603i \(-0.622715\pi\)
−0.376042 + 0.926603i \(0.622715\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.16300 0.166896
\(958\) 0 0
\(959\) −0.347637 −0.0112258
\(960\) 0 0
\(961\) −8.19867 −0.264473
\(962\) 0 0
\(963\) 24.0693 0.775621
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −43.0803 −1.38537 −0.692685 0.721240i \(-0.743572\pi\)
−0.692685 + 0.721240i \(0.743572\pi\)
\(968\) 0 0
\(969\) 86.8526 2.79011
\(970\) 0 0
\(971\) −19.7402 −0.633495 −0.316747 0.948510i \(-0.602591\pi\)
−0.316747 + 0.948510i \(0.602591\pi\)
\(972\) 0 0
\(973\) 6.92827 0.222110
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.2292 0.359254 0.179627 0.983735i \(-0.442511\pi\)
0.179627 + 0.983735i \(0.442511\pi\)
\(978\) 0 0
\(979\) 12.5696 0.401725
\(980\) 0 0
\(981\) 42.1791 1.34667
\(982\) 0 0
\(983\) 38.7873 1.23712 0.618561 0.785737i \(-0.287716\pi\)
0.618561 + 0.785737i \(0.287716\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.16587 0.0689406
\(988\) 0 0
\(989\) 6.19316 0.196931
\(990\) 0 0
\(991\) 37.1021 1.17859 0.589294 0.807919i \(-0.299406\pi\)
0.589294 + 0.807919i \(0.299406\pi\)
\(992\) 0 0
\(993\) 33.7991 1.07258
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.14469 0.162934 0.0814670 0.996676i \(-0.474039\pi\)
0.0814670 + 0.996676i \(0.474039\pi\)
\(998\) 0 0
\(999\) −13.7840 −0.436106
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.a.n.1.2 yes 6
4.3 odd 2 4000.2.a.k.1.5 6
5.2 odd 4 4000.2.c.g.1249.10 12
5.3 odd 4 4000.2.c.g.1249.3 12
5.4 even 2 4000.2.a.l.1.5 yes 6
8.3 odd 2 8000.2.a.bv.1.2 6
8.5 even 2 8000.2.a.bw.1.5 6
20.3 even 4 4000.2.c.f.1249.10 12
20.7 even 4 4000.2.c.f.1249.3 12
20.19 odd 2 4000.2.a.m.1.2 yes 6
40.19 odd 2 8000.2.a.bx.1.5 6
40.29 even 2 8000.2.a.bu.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.2.a.k.1.5 6 4.3 odd 2
4000.2.a.l.1.5 yes 6 5.4 even 2
4000.2.a.m.1.2 yes 6 20.19 odd 2
4000.2.a.n.1.2 yes 6 1.1 even 1 trivial
4000.2.c.f.1249.3 12 20.7 even 4
4000.2.c.f.1249.10 12 20.3 even 4
4000.2.c.g.1249.3 12 5.3 odd 4
4000.2.c.g.1249.10 12 5.2 odd 4
8000.2.a.bu.1.2 6 40.29 even 2
8000.2.a.bv.1.2 6 8.3 odd 2
8000.2.a.bw.1.5 6 8.5 even 2
8000.2.a.bx.1.5 6 40.19 odd 2