Properties

Label 2-4000-1.1-c1-0-28
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.306·3-s + 2.60·7-s − 2.90·9-s − 2.71·11-s + 0.503·13-s + 5.94·17-s + 5.72·19-s + 0.799·21-s − 1.28·23-s − 1.81·27-s + 2.11·29-s − 3.95·31-s − 0.831·33-s + 0.825·37-s + 0.154·39-s − 4.53·41-s + 5.38·43-s − 5.62·47-s − 0.205·49-s + 1.82·51-s + 10.9·53-s + 1.75·57-s + 13.7·59-s − 7.00·61-s − 7.57·63-s − 2.85·67-s − 0.394·69-s + ⋯
L(s)  = 1  + 0.176·3-s + 0.985·7-s − 0.968·9-s − 0.818·11-s + 0.139·13-s + 1.44·17-s + 1.31·19-s + 0.174·21-s − 0.268·23-s − 0.348·27-s + 0.392·29-s − 0.710·31-s − 0.144·33-s + 0.135·37-s + 0.0246·39-s − 0.707·41-s + 0.821·43-s − 0.819·47-s − 0.0294·49-s + 0.255·51-s + 1.50·53-s + 0.232·57-s + 1.79·59-s − 0.896·61-s − 0.954·63-s − 0.348·67-s − 0.0475·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.131582554\)
\(L(\frac12)\) \(\approx\) \(2.131582554\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.306T + 3T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
11 \( 1 + 2.71T + 11T^{2} \)
13 \( 1 - 0.503T + 13T^{2} \)
17 \( 1 - 5.94T + 17T^{2} \)
19 \( 1 - 5.72T + 19T^{2} \)
23 \( 1 + 1.28T + 23T^{2} \)
29 \( 1 - 2.11T + 29T^{2} \)
31 \( 1 + 3.95T + 31T^{2} \)
37 \( 1 - 0.825T + 37T^{2} \)
41 \( 1 + 4.53T + 41T^{2} \)
43 \( 1 - 5.38T + 43T^{2} \)
47 \( 1 + 5.62T + 47T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 + 7.00T + 61T^{2} \)
67 \( 1 + 2.85T + 67T^{2} \)
71 \( 1 - 11.3T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 5.83T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 + 7.02T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.315188795635865697496631188165, −7.80428423455454623657033324018, −7.26532758660719514118034074379, −6.02453108061362074549569151098, −5.37887264519669949928535237885, −4.94464768356629311375536181624, −3.67835338587488315604894675673, −2.99364318037871189991859861643, −2.01528364310554876741517759295, −0.843926610585343151757524194620, 0.843926610585343151757524194620, 2.01528364310554876741517759295, 2.99364318037871189991859861643, 3.67835338587488315604894675673, 4.94464768356629311375536181624, 5.37887264519669949928535237885, 6.02453108061362074549569151098, 7.26532758660719514118034074379, 7.80428423455454623657033324018, 8.315188795635865697496631188165

Graph of the $Z$-function along the critical line