L(s) = 1 | + 0.306·3-s + 2.60·7-s − 2.90·9-s − 2.71·11-s + 0.503·13-s + 5.94·17-s + 5.72·19-s + 0.799·21-s − 1.28·23-s − 1.81·27-s + 2.11·29-s − 3.95·31-s − 0.831·33-s + 0.825·37-s + 0.154·39-s − 4.53·41-s + 5.38·43-s − 5.62·47-s − 0.205·49-s + 1.82·51-s + 10.9·53-s + 1.75·57-s + 13.7·59-s − 7.00·61-s − 7.57·63-s − 2.85·67-s − 0.394·69-s + ⋯ |
L(s) = 1 | + 0.176·3-s + 0.985·7-s − 0.968·9-s − 0.818·11-s + 0.139·13-s + 1.44·17-s + 1.31·19-s + 0.174·21-s − 0.268·23-s − 0.348·27-s + 0.392·29-s − 0.710·31-s − 0.144·33-s + 0.135·37-s + 0.0246·39-s − 0.707·41-s + 0.821·43-s − 0.819·47-s − 0.0294·49-s + 0.255·51-s + 1.50·53-s + 0.232·57-s + 1.79·59-s − 0.896·61-s − 0.954·63-s − 0.348·67-s − 0.0475·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.131582554 |
L(21) |
≈ |
2.131582554 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−0.306T+3T2 |
| 7 | 1−2.60T+7T2 |
| 11 | 1+2.71T+11T2 |
| 13 | 1−0.503T+13T2 |
| 17 | 1−5.94T+17T2 |
| 19 | 1−5.72T+19T2 |
| 23 | 1+1.28T+23T2 |
| 29 | 1−2.11T+29T2 |
| 31 | 1+3.95T+31T2 |
| 37 | 1−0.825T+37T2 |
| 41 | 1+4.53T+41T2 |
| 43 | 1−5.38T+43T2 |
| 47 | 1+5.62T+47T2 |
| 53 | 1−10.9T+53T2 |
| 59 | 1−13.7T+59T2 |
| 61 | 1+7.00T+61T2 |
| 67 | 1+2.85T+67T2 |
| 71 | 1−11.3T+71T2 |
| 73 | 1+10.1T+73T2 |
| 79 | 1−11.1T+79T2 |
| 83 | 1+5.83T+83T2 |
| 89 | 1−13.7T+89T2 |
| 97 | 1+7.02T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.315188795635865697496631188165, −7.80428423455454623657033324018, −7.26532758660719514118034074379, −6.02453108061362074549569151098, −5.37887264519669949928535237885, −4.94464768356629311375536181624, −3.67835338587488315604894675673, −2.99364318037871189991859861643, −2.01528364310554876741517759295, −0.843926610585343151757524194620,
0.843926610585343151757524194620, 2.01528364310554876741517759295, 2.99364318037871189991859861643, 3.67835338587488315604894675673, 4.94464768356629311375536181624, 5.37887264519669949928535237885, 6.02453108061362074549569151098, 7.26532758660719514118034074379, 7.80428423455454623657033324018, 8.315188795635865697496631188165