Properties

Label 4000.2.c.f
Level 40004000
Weight 22
Character orbit 4000.c
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1249,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+22x10+179x8+646x6+929x4+252x2+16 x^{12} + 22x^{10} + 179x^{8} + 646x^{6} + 929x^{4} + 252x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β11q7+(β6+β4+β3)q9+(β4+β3+β22)q11+(β11+β10+β1)q13+(β11+β10++β1)q17++(6β6β44β3++4)q99+O(q100) q + \beta_1 q^{3} - \beta_{11} q^{7} + (\beta_{6} + \beta_{4} + \beta_{3}) q^{9} + (\beta_{4} + \beta_{3} + \beta_{2} - 2) q^{11} + ( - \beta_{11} + \beta_{10} + \cdots - \beta_1) q^{13} + (\beta_{11} + \beta_{10} + \cdots + \beta_1) q^{17}+ \cdots + ( - 6 \beta_{6} - \beta_{4} - 4 \beta_{3} + \cdots + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q8q926q11+18q194q2924q31+52q3910q41+6q4936q51+50q5912q61+24q6968q71+32q7936q81+6q8952q91++86q99+O(q100) 12 q - 8 q^{9} - 26 q^{11} + 18 q^{19} - 4 q^{29} - 24 q^{31} + 52 q^{39} - 10 q^{41} + 6 q^{49} - 36 q^{51} + 50 q^{59} - 12 q^{61} + 24 q^{69} - 68 q^{71} + 32 q^{79} - 36 q^{81} + 6 q^{89} - 52 q^{91}+ \cdots + 86 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+22x10+179x8+646x6+929x4+252x2+16 x^{12} + 22x^{10} + 179x^{8} + 646x^{6} + 929x^{4} + 252x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (2ν1033ν8165ν6189ν4+274ν2+36)/46 ( -2\nu^{10} - 33\nu^{8} - 165\nu^{6} - 189\nu^{4} + 274\nu^{2} + 36 ) / 46 Copy content Toggle raw display
β3\beta_{3}== (4ν10+66ν8+353ν6+631ν4+119ν2+20)/46 ( 4\nu^{10} + 66\nu^{8} + 353\nu^{6} + 631\nu^{4} + 119\nu^{2} + 20 ) / 46 Copy content Toggle raw display
β4\beta_{4}== (3ν1038ν875ν6+556ν4+1883ν2+560)/92 ( -3\nu^{10} - 38\nu^{8} - 75\nu^{6} + 556\nu^{4} + 1883\nu^{2} + 560 ) / 92 Copy content Toggle raw display
β5\beta_{5}== (5ν11+94ν9+631ν7+1818ν5+2121ν3+784ν)/184 ( 5\nu^{11} + 94\nu^{9} + 631\nu^{7} + 1818\nu^{5} + 2121\nu^{3} + 784\nu ) / 184 Copy content Toggle raw display
β6\beta_{6}== (5ν1094ν8631ν61818ν42029ν2324)/92 ( -5\nu^{10} - 94\nu^{8} - 631\nu^{6} - 1818\nu^{4} - 2029\nu^{2} - 324 ) / 92 Copy content Toggle raw display
β7\beta_{7}== (5ν1194ν9631ν71818ν52029ν3232ν)/92 ( -5\nu^{11} - 94\nu^{9} - 631\nu^{7} - 1818\nu^{5} - 2029\nu^{3} - 232\nu ) / 92 Copy content Toggle raw display
β8\beta_{8}== (3ν1084ν8811ν63216ν44511ν2544)/92 ( -3\nu^{10} - 84\nu^{8} - 811\nu^{6} - 3216\nu^{4} - 4511\nu^{2} - 544 ) / 92 Copy content Toggle raw display
β9\beta_{9}== (7ν11150ν91187ν74146ν55619ν3978ν)/92 ( -7\nu^{11} - 150\nu^{9} - 1187\nu^{7} - 4146\nu^{5} - 5619\nu^{3} - 978\nu ) / 92 Copy content Toggle raw display
β10\beta_{10}== (13ν11+318ν9+2855ν7+11222ν5+17125ν3+4044ν)/184 ( 13\nu^{11} + 318\nu^{9} + 2855\nu^{7} + 11222\nu^{5} + 17125\nu^{3} + 4044\nu ) / 184 Copy content Toggle raw display
β11\beta_{11}== (15ν11+328ν9+2629ν7+9180ν5+12159ν3+1846ν)/92 ( 15\nu^{11} + 328\nu^{9} + 2629\nu^{7} + 9180\nu^{5} + 12159\nu^{3} + 1846\nu ) / 92 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+β4+β33 \beta_{6} + \beta_{4} + \beta_{3} - 3 Copy content Toggle raw display
ν3\nu^{3}== β7+2β56β1 \beta_{7} + 2\beta_{5} - 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β89β66β48β3β2+15 \beta_{8} - 9\beta_{6} - 6\beta_{4} - 8\beta_{3} - \beta_{2} + 15 Copy content Toggle raw display
ν5\nu^{5}== 2β10+4β911β716β5+39β1 2\beta_{10} + 4\beta_{9} - 11\beta_{7} - 16\beta_{5} + 39\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 11β8+70β6+37β4+61β3+15β282 -11\beta_{8} + 70\beta_{6} + 37\beta_{4} + 61\beta_{3} + 15\beta_{2} - 82 Copy content Toggle raw display
ν7\nu^{7}== 4β1124β1058β9+96β7+116β5261β1 -4\beta_{11} - 24\beta_{10} - 58\beta_{9} + 96\beta_{7} + 116\beta_{5} - 261\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 92β8521β6237β4459β3158β2+475 92\beta_{8} - 521\beta_{6} - 237\beta_{4} - 459\beta_{3} - 158\beta_{2} + 475 Copy content Toggle raw display
ν9\nu^{9}== 66β11+222β10+604β9771β7824β5+1784β1 66\beta_{11} + 222\beta_{10} + 604\beta_{9} - 771\beta_{7} - 824\beta_{5} + 1784\beta_1 Copy content Toggle raw display
ν10\nu^{10}== 705β8+3809β6+1562β4+3434β3+1441β22883 -705\beta_{8} + 3809\beta_{6} + 1562\beta_{4} + 3434\beta_{3} + 1441\beta_{2} - 2883 Copy content Toggle raw display
ν11\nu^{11}== 736β111872β105490β9+5955β7+5858β512393β1 -736\beta_{11} - 1872\beta_{10} - 5490\beta_{9} + 5955\beta_{7} + 5858\beta_{5} - 12393\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4000Z)×\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times.

nn 13771377 25012501 27512751
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
2.71210i
2.40554i
2.29226i
1.81030i
0.481965i
0.306558i
0.306558i
0.481965i
1.81030i
2.29226i
2.40554i
2.71210i
0 2.71210i 0 0 0 0.0156607i 0 −4.35547 0
1249.2 0 2.40554i 0 0 0 2.20893i 0 −2.78662 0
1249.3 0 2.29226i 0 0 0 0.938845i 0 −2.25447 0
1249.4 0 1.81030i 0 0 0 4.37760i 0 −0.277175 0
1249.5 0 0.481965i 0 0 0 2.69841i 0 2.76771 0
1249.6 0 0.306558i 0 0 0 2.60656i 0 2.90602 0
1249.7 0 0.306558i 0 0 0 2.60656i 0 2.90602 0
1249.8 0 0.481965i 0 0 0 2.69841i 0 2.76771 0
1249.9 0 1.81030i 0 0 0 4.37760i 0 −0.277175 0
1249.10 0 2.29226i 0 0 0 0.938845i 0 −2.25447 0
1249.11 0 2.40554i 0 0 0 2.20893i 0 −2.78662 0
1249.12 0 2.71210i 0 0 0 0.0156607i 0 −4.35547 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.c.f 12
4.b odd 2 1 4000.2.c.g 12
5.b even 2 1 inner 4000.2.c.f 12
5.c odd 4 1 4000.2.a.k 6
5.c odd 4 1 4000.2.a.m yes 6
20.d odd 2 1 4000.2.c.g 12
20.e even 4 1 4000.2.a.l yes 6
20.e even 4 1 4000.2.a.n yes 6
40.i odd 4 1 8000.2.a.bv 6
40.i odd 4 1 8000.2.a.bx 6
40.k even 4 1 8000.2.a.bu 6
40.k even 4 1 8000.2.a.bw 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.k 6 5.c odd 4 1
4000.2.a.l yes 6 20.e even 4 1
4000.2.a.m yes 6 5.c odd 4 1
4000.2.a.n yes 6 20.e even 4 1
4000.2.c.f 12 1.a even 1 1 trivial
4000.2.c.f 12 5.b even 2 1 inner
4000.2.c.g 12 4.b odd 2 1
4000.2.c.g 12 20.d odd 2 1
8000.2.a.bu 6 40.k even 4 1
8000.2.a.bv 6 40.i odd 4 1
8000.2.a.bw 6 40.k even 4 1
8000.2.a.bx 6 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4000,[χ])S_{2}^{\mathrm{new}}(4000, [\chi]):

T312+22T310+179T38+646T36+929T34+252T32+16 T_{3}^{12} + 22T_{3}^{10} + 179T_{3}^{8} + 646T_{3}^{6} + 929T_{3}^{4} + 252T_{3}^{2} + 16 Copy content Toggle raw display
T712+39T710+515T78+2930T76+6835T74+4079T72+1 T_{7}^{12} + 39T_{7}^{10} + 515T_{7}^{8} + 2930T_{7}^{6} + 6835T_{7}^{4} + 4079T_{7}^{2} + 1 Copy content Toggle raw display
T116+13T115+41T11450T113325T112375T11125 T_{11}^{6} + 13T_{11}^{5} + 41T_{11}^{4} - 50T_{11}^{3} - 325T_{11}^{2} - 375T_{11} - 125 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+22T10++16 T^{12} + 22 T^{10} + \cdots + 16 Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12+39T10++1 T^{12} + 39 T^{10} + \cdots + 1 Copy content Toggle raw display
1111 (T6+13T5+125)2 (T^{6} + 13 T^{5} + \cdots - 125)^{2} Copy content Toggle raw display
1313 T12+117T10++390625 T^{12} + 117 T^{10} + \cdots + 390625 Copy content Toggle raw display
1717 T12+148T10++4000000 T^{12} + 148 T^{10} + \cdots + 4000000 Copy content Toggle raw display
1919 (T69T5++125)2 (T^{6} - 9 T^{5} + \cdots + 125)^{2} Copy content Toggle raw display
2323 T12+71T10++4096 T^{12} + 71 T^{10} + \cdots + 4096 Copy content Toggle raw display
2929 (T6+2T5+2636)2 (T^{6} + 2 T^{5} + \cdots - 2636)^{2} Copy content Toggle raw display
3131 (T6+12T5+29500)2 (T^{6} + 12 T^{5} + \cdots - 29500)^{2} Copy content Toggle raw display
3737 T12+303T10++64000000 T^{12} + 303 T^{10} + \cdots + 64000000 Copy content Toggle raw display
4141 (T6+5T5++10475)2 (T^{6} + 5 T^{5} + \cdots + 10475)^{2} Copy content Toggle raw display
4343 T12++588353536 T^{12} + \cdots + 588353536 Copy content Toggle raw display
4747 T12+249T10++6497401 T^{12} + 249 T^{10} + \cdots + 6497401 Copy content Toggle raw display
5353 T12+333T10++97515625 T^{12} + 333 T^{10} + \cdots + 97515625 Copy content Toggle raw display
5959 (T625T5+59375)2 (T^{6} - 25 T^{5} + \cdots - 59375)^{2} Copy content Toggle raw display
6161 (T6+6T5+32220)2 (T^{6} + 6 T^{5} + \cdots - 32220)^{2} Copy content Toggle raw display
6767 T12+318T10++28772496 T^{12} + 318 T^{10} + \cdots + 28772496 Copy content Toggle raw display
7171 (T6+34T5+372500)2 (T^{6} + 34 T^{5} + \cdots - 372500)^{2} Copy content Toggle raw display
7373 T12+490T10++6250000 T^{12} + 490 T^{10} + \cdots + 6250000 Copy content Toggle raw display
7979 (T616T5++174500)2 (T^{6} - 16 T^{5} + \cdots + 174500)^{2} Copy content Toggle raw display
8383 T12++2123366400 T^{12} + \cdots + 2123366400 Copy content Toggle raw display
8989 (T63T5+142144)2 (T^{6} - 3 T^{5} + \cdots - 142144)^{2} Copy content Toggle raw display
9797 T12++31506250000 T^{12} + \cdots + 31506250000 Copy content Toggle raw display
show more
show less