Properties

Label 2-4000-5.4-c1-0-16
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.71i·3-s + 0.0156i·7-s − 4.35·9-s − 6.41·11-s + 2.76i·13-s − 2.07i·17-s + 4.25·19-s + 0.0424·21-s + 5.97i·23-s + 3.67i·27-s − 5.37·29-s + 3.59·31-s + 17.3i·33-s + 9.04i·37-s + 7.48·39-s + ⋯
L(s)  = 1  − 1.56i·3-s + 0.00591i·7-s − 1.45·9-s − 1.93·11-s + 0.765i·13-s − 0.503i·17-s + 0.976·19-s + 0.00926·21-s + 1.24i·23-s + 0.707i·27-s − 0.998·29-s + 0.645·31-s + 3.02i·33-s + 1.48i·37-s + 1.19·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.086908454\)
\(L(\frac12)\) \(\approx\) \(1.086908454\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.71iT - 3T^{2} \)
7 \( 1 - 0.0156iT - 7T^{2} \)
11 \( 1 + 6.41T + 11T^{2} \)
13 \( 1 - 2.76iT - 13T^{2} \)
17 \( 1 + 2.07iT - 17T^{2} \)
19 \( 1 - 4.25T + 19T^{2} \)
23 \( 1 - 5.97iT - 23T^{2} \)
29 \( 1 + 5.37T + 29T^{2} \)
31 \( 1 - 3.59T + 31T^{2} \)
37 \( 1 - 9.04iT - 37T^{2} \)
41 \( 1 + 7.03T + 41T^{2} \)
43 \( 1 + 4.96iT - 43T^{2} \)
47 \( 1 + 5.73iT - 47T^{2} \)
53 \( 1 - 10.5iT - 53T^{2} \)
59 \( 1 - 1.13T + 59T^{2} \)
61 \( 1 - 8.76T + 61T^{2} \)
67 \( 1 + 11.0iT - 67T^{2} \)
71 \( 1 - 11.0T + 71T^{2} \)
73 \( 1 - 7.38iT - 73T^{2} \)
79 \( 1 - 13.4T + 79T^{2} \)
83 \( 1 - 3.44iT - 83T^{2} \)
89 \( 1 - 9.49T + 89T^{2} \)
97 \( 1 - 9.21iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.074732025343243265064283136266, −7.71001670641496577731026535644, −7.10438894906411783434809379114, −6.44723501377992077935440865674, −5.40896257680392037110426555917, −5.10214286674352807071033965776, −3.60424605129796427064705819963, −2.65733033454136379793378562369, −1.98504007878982449754107269802, −0.906175012772405247850480600087, 0.37408343939491008545430485415, 2.33630697861665353273623081850, 3.10161790044284023524734566302, 3.85428800822567848199330418508, 4.78455855587747458478360357638, 5.32742787850844154239825823883, 5.82946683123750682550523756503, 7.07994321190054923450041597110, 8.003875156362314393232657633812, 8.386706423706746547679962675994

Graph of the $Z$-function along the critical line