L(s) = 1 | − 2.71i·3-s + 0.0156i·7-s − 4.35·9-s − 6.41·11-s + 2.76i·13-s − 2.07i·17-s + 4.25·19-s + 0.0424·21-s + 5.97i·23-s + 3.67i·27-s − 5.37·29-s + 3.59·31-s + 17.3i·33-s + 9.04i·37-s + 7.48·39-s + ⋯ |
L(s) = 1 | − 1.56i·3-s + 0.00591i·7-s − 1.45·9-s − 1.93·11-s + 0.765i·13-s − 0.503i·17-s + 0.976·19-s + 0.00926·21-s + 1.24i·23-s + 0.707i·27-s − 0.998·29-s + 0.645·31-s + 3.02i·33-s + 1.48i·37-s + 1.19·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
1
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), 1)
|
Particular Values
L(1) |
≈ |
1.086908454 |
L(21) |
≈ |
1.086908454 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.71iT−3T2 |
| 7 | 1−0.0156iT−7T2 |
| 11 | 1+6.41T+11T2 |
| 13 | 1−2.76iT−13T2 |
| 17 | 1+2.07iT−17T2 |
| 19 | 1−4.25T+19T2 |
| 23 | 1−5.97iT−23T2 |
| 29 | 1+5.37T+29T2 |
| 31 | 1−3.59T+31T2 |
| 37 | 1−9.04iT−37T2 |
| 41 | 1+7.03T+41T2 |
| 43 | 1+4.96iT−43T2 |
| 47 | 1+5.73iT−47T2 |
| 53 | 1−10.5iT−53T2 |
| 59 | 1−1.13T+59T2 |
| 61 | 1−8.76T+61T2 |
| 67 | 1+11.0iT−67T2 |
| 71 | 1−11.0T+71T2 |
| 73 | 1−7.38iT−73T2 |
| 79 | 1−13.4T+79T2 |
| 83 | 1−3.44iT−83T2 |
| 89 | 1−9.49T+89T2 |
| 97 | 1−9.21iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.074732025343243265064283136266, −7.71001670641496577731026535644, −7.10438894906411783434809379114, −6.44723501377992077935440865674, −5.40896257680392037110426555917, −5.10214286674352807071033965776, −3.60424605129796427064705819963, −2.65733033454136379793378562369, −1.98504007878982449754107269802, −0.906175012772405247850480600087,
0.37408343939491008545430485415, 2.33630697861665353273623081850, 3.10161790044284023524734566302, 3.85428800822567848199330418508, 4.78455855587747458478360357638, 5.32742787850844154239825823883, 5.82946683123750682550523756503, 7.07994321190054923450041597110, 8.003875156362314393232657633812, 8.386706423706746547679962675994