Properties

Label 2-4000-5.4-c1-0-21
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40i·3-s − 2.20i·7-s − 2.78·9-s − 1.68·11-s + 6.87i·13-s + 5.86i·17-s + 0.108·19-s − 5.31·21-s − 4.40i·23-s − 0.513i·27-s + 4.25·29-s − 9.07·31-s + 4.04i·33-s − 1.74i·37-s + 16.5·39-s + ⋯
L(s)  = 1  − 1.38i·3-s − 0.834i·7-s − 0.928·9-s − 0.507·11-s + 1.90i·13-s + 1.42i·17-s + 0.0248·19-s − 1.15·21-s − 0.918i·23-s − 0.0987i·27-s + 0.790·29-s − 1.62·31-s + 0.704i·33-s − 0.287i·37-s + 2.64·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.412325537\)
\(L(\frac12)\) \(\approx\) \(1.412325537\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.40iT - 3T^{2} \)
7 \( 1 + 2.20iT - 7T^{2} \)
11 \( 1 + 1.68T + 11T^{2} \)
13 \( 1 - 6.87iT - 13T^{2} \)
17 \( 1 - 5.86iT - 17T^{2} \)
19 \( 1 - 0.108T + 19T^{2} \)
23 \( 1 + 4.40iT - 23T^{2} \)
29 \( 1 - 4.25T + 29T^{2} \)
31 \( 1 + 9.07T + 31T^{2} \)
37 \( 1 + 1.74iT - 37T^{2} \)
41 \( 1 - 7.95T + 41T^{2} \)
43 \( 1 - 8.89iT - 43T^{2} \)
47 \( 1 - 10.5iT - 47T^{2} \)
53 \( 1 - 8.51iT - 53T^{2} \)
59 \( 1 - 7.67T + 59T^{2} \)
61 \( 1 - 1.94T + 61T^{2} \)
67 \( 1 - 0.788iT - 67T^{2} \)
71 \( 1 + 5.48T + 71T^{2} \)
73 \( 1 - 11.9iT - 73T^{2} \)
79 \( 1 - 1.28T + 79T^{2} \)
83 \( 1 - 4.08iT - 83T^{2} \)
89 \( 1 - 2.37T + 89T^{2} \)
97 \( 1 + 5.70iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.275482766501717128960074220884, −7.56838609830062879538936439046, −7.03379101006718697980338715534, −6.41099484858286476777829854740, −5.82086821730217476235371254793, −4.45663093316803427550304183717, −4.02393573374010130512224018090, −2.64809713064670485827720827647, −1.81879063099329373397517166208, −1.03686488130394859177311327608, 0.45727767090307969466642449951, 2.30033042211614620867202342961, 3.14488390758048170810231885965, 3.70959877584956445409211120042, 4.94381600606945568338396978626, 5.32210404247796694966294989365, 5.78408324917380360710216193453, 7.13823717639861220534380707361, 7.78329770045127948457860160551, 8.711667353335464571468619606713

Graph of the $Z$-function along the critical line