L(s) = 1 | − 2.40i·3-s − 2.20i·7-s − 2.78·9-s − 1.68·11-s + 6.87i·13-s + 5.86i·17-s + 0.108·19-s − 5.31·21-s − 4.40i·23-s − 0.513i·27-s + 4.25·29-s − 9.07·31-s + 4.04i·33-s − 1.74i·37-s + 16.5·39-s + ⋯ |
L(s) = 1 | − 1.38i·3-s − 0.834i·7-s − 0.928·9-s − 0.507·11-s + 1.90i·13-s + 1.42i·17-s + 0.0248·19-s − 1.15·21-s − 0.918i·23-s − 0.0987i·27-s + 0.790·29-s − 1.62·31-s + 0.704i·33-s − 0.287i·37-s + 2.64·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
1
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), 1)
|
Particular Values
L(1) |
≈ |
1.412325537 |
L(21) |
≈ |
1.412325537 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.40iT−3T2 |
| 7 | 1+2.20iT−7T2 |
| 11 | 1+1.68T+11T2 |
| 13 | 1−6.87iT−13T2 |
| 17 | 1−5.86iT−17T2 |
| 19 | 1−0.108T+19T2 |
| 23 | 1+4.40iT−23T2 |
| 29 | 1−4.25T+29T2 |
| 31 | 1+9.07T+31T2 |
| 37 | 1+1.74iT−37T2 |
| 41 | 1−7.95T+41T2 |
| 43 | 1−8.89iT−43T2 |
| 47 | 1−10.5iT−47T2 |
| 53 | 1−8.51iT−53T2 |
| 59 | 1−7.67T+59T2 |
| 61 | 1−1.94T+61T2 |
| 67 | 1−0.788iT−67T2 |
| 71 | 1+5.48T+71T2 |
| 73 | 1−11.9iT−73T2 |
| 79 | 1−1.28T+79T2 |
| 83 | 1−4.08iT−83T2 |
| 89 | 1−2.37T+89T2 |
| 97 | 1+5.70iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.275482766501717128960074220884, −7.56838609830062879538936439046, −7.03379101006718697980338715534, −6.41099484858286476777829854740, −5.82086821730217476235371254793, −4.45663093316803427550304183717, −4.02393573374010130512224018090, −2.64809713064670485827720827647, −1.81879063099329373397517166208, −1.03686488130394859177311327608,
0.45727767090307969466642449951, 2.30033042211614620867202342961, 3.14488390758048170810231885965, 3.70959877584956445409211120042, 4.94381600606945568338396978626, 5.32210404247796694966294989365, 5.78408324917380360710216193453, 7.13823717639861220534380707361, 7.78329770045127948457860160551, 8.711667353335464571468619606713