Properties

Label 2-4000-5.4-c1-0-50
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.306i·3-s − 2.60i·7-s + 2.90·9-s + 2.71·11-s − 0.503i·13-s + 5.94i·17-s + 5.72·19-s + 0.799·21-s − 1.28i·23-s + 1.81i·27-s − 2.11·29-s + 3.95·31-s + 0.831i·33-s + 0.825i·37-s + 0.154·39-s + ⋯
L(s)  = 1  + 0.176i·3-s − 0.985i·7-s + 0.968·9-s + 0.818·11-s − 0.139i·13-s + 1.44i·17-s + 1.31·19-s + 0.174·21-s − 0.268i·23-s + 0.348i·27-s − 0.392·29-s + 0.710·31-s + 0.144i·33-s + 0.135i·37-s + 0.0246·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.341334368\)
\(L(\frac12)\) \(\approx\) \(2.341334368\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.306iT - 3T^{2} \)
7 \( 1 + 2.60iT - 7T^{2} \)
11 \( 1 - 2.71T + 11T^{2} \)
13 \( 1 + 0.503iT - 13T^{2} \)
17 \( 1 - 5.94iT - 17T^{2} \)
19 \( 1 - 5.72T + 19T^{2} \)
23 \( 1 + 1.28iT - 23T^{2} \)
29 \( 1 + 2.11T + 29T^{2} \)
31 \( 1 - 3.95T + 31T^{2} \)
37 \( 1 - 0.825iT - 37T^{2} \)
41 \( 1 + 4.53T + 41T^{2} \)
43 \( 1 - 5.38iT - 43T^{2} \)
47 \( 1 - 5.62iT - 47T^{2} \)
53 \( 1 + 10.9iT - 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 + 7.00T + 61T^{2} \)
67 \( 1 - 2.85iT - 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 - 10.1iT - 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 5.83iT - 83T^{2} \)
89 \( 1 + 13.7T + 89T^{2} \)
97 \( 1 + 7.02iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.372969162505242410560318921969, −7.67164165729430461276154082386, −6.97639971187206771505235934338, −6.40396303678978662247444718085, −5.44473799146764295973591890567, −4.44928356940705091490909803987, −3.95298573379079286218799589903, −3.19689926592584631656563085779, −1.71107400391760168829292155130, −0.974295861166339251123190171086, 0.915256463997868912796970581395, 1.94516425331264553051481797436, 2.91203111632549802402398799734, 3.81524129493345317976325938946, 4.78937250188975092036891343517, 5.42842211325491932501383546643, 6.27867802716520724464260757809, 7.12983332746628057564067134505, 7.49405381665830138392612920156, 8.566918253227958342263826728344

Graph of the $Z$-function along the critical line