L(s) = 1 | + 2.40·3-s − 2.20·7-s + 2.78·9-s + 1.68·11-s + 6.87·13-s − 5.86·17-s + 0.108·19-s − 5.31·21-s + 4.40·23-s − 0.513·27-s − 4.25·29-s + 9.07·31-s + 4.04·33-s + 1.74·37-s + 16.5·39-s + 7.95·41-s − 8.89·43-s + 10.5·47-s − 2.12·49-s − 14.1·51-s + 8.51·53-s + 0.260·57-s + 7.67·59-s + 1.94·61-s − 6.15·63-s + 0.788·67-s + 10.5·69-s + ⋯ |
L(s) = 1 | + 1.38·3-s − 0.834·7-s + 0.928·9-s + 0.507·11-s + 1.90·13-s − 1.42·17-s + 0.0248·19-s − 1.15·21-s + 0.918·23-s − 0.0987·27-s − 0.790·29-s + 1.62·31-s + 0.704·33-s + 0.287·37-s + 2.64·39-s + 1.24·41-s − 1.35·43-s + 1.53·47-s − 0.302·49-s − 1.97·51-s + 1.16·53-s + 0.0345·57-s + 0.999·59-s + 0.249·61-s − 0.775·63-s + 0.0963·67-s + 1.27·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.224066610 |
L(21) |
≈ |
3.224066610 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2.40T+3T2 |
| 7 | 1+2.20T+7T2 |
| 11 | 1−1.68T+11T2 |
| 13 | 1−6.87T+13T2 |
| 17 | 1+5.86T+17T2 |
| 19 | 1−0.108T+19T2 |
| 23 | 1−4.40T+23T2 |
| 29 | 1+4.25T+29T2 |
| 31 | 1−9.07T+31T2 |
| 37 | 1−1.74T+37T2 |
| 41 | 1−7.95T+41T2 |
| 43 | 1+8.89T+43T2 |
| 47 | 1−10.5T+47T2 |
| 53 | 1−8.51T+53T2 |
| 59 | 1−7.67T+59T2 |
| 61 | 1−1.94T+61T2 |
| 67 | 1−0.788T+67T2 |
| 71 | 1−5.48T+71T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1−1.28T+79T2 |
| 83 | 1+4.08T+83T2 |
| 89 | 1+2.37T+89T2 |
| 97 | 1−5.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.534711056562788620986556491733, −7.994161633014397889341414554312, −6.85835220760440089928627928690, −6.51657821095068523070446606849, −5.58814440738750453402582690095, −4.24018134683575526941493658189, −3.77116765835920442107650954761, −2.98690796114780750824466484933, −2.19942232436056688573320124342, −1.00066617030322062623973204524,
1.00066617030322062623973204524, 2.19942232436056688573320124342, 2.98690796114780750824466484933, 3.77116765835920442107650954761, 4.24018134683575526941493658189, 5.58814440738750453402582690095, 6.51657821095068523070446606849, 6.85835220760440089928627928690, 7.994161633014397889341414554312, 8.534711056562788620986556491733