Properties

Label 2-4000-1.1-c1-0-37
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.40·3-s − 2.20·7-s + 2.78·9-s + 1.68·11-s + 6.87·13-s − 5.86·17-s + 0.108·19-s − 5.31·21-s + 4.40·23-s − 0.513·27-s − 4.25·29-s + 9.07·31-s + 4.04·33-s + 1.74·37-s + 16.5·39-s + 7.95·41-s − 8.89·43-s + 10.5·47-s − 2.12·49-s − 14.1·51-s + 8.51·53-s + 0.260·57-s + 7.67·59-s + 1.94·61-s − 6.15·63-s + 0.788·67-s + 10.5·69-s + ⋯
L(s)  = 1  + 1.38·3-s − 0.834·7-s + 0.928·9-s + 0.507·11-s + 1.90·13-s − 1.42·17-s + 0.0248·19-s − 1.15·21-s + 0.918·23-s − 0.0987·27-s − 0.790·29-s + 1.62·31-s + 0.704·33-s + 0.287·37-s + 2.64·39-s + 1.24·41-s − 1.35·43-s + 1.53·47-s − 0.302·49-s − 1.97·51-s + 1.16·53-s + 0.0345·57-s + 0.999·59-s + 0.249·61-s − 0.775·63-s + 0.0963·67-s + 1.27·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.224066610\)
\(L(\frac12)\) \(\approx\) \(3.224066610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 2.40T + 3T^{2} \)
7 \( 1 + 2.20T + 7T^{2} \)
11 \( 1 - 1.68T + 11T^{2} \)
13 \( 1 - 6.87T + 13T^{2} \)
17 \( 1 + 5.86T + 17T^{2} \)
19 \( 1 - 0.108T + 19T^{2} \)
23 \( 1 - 4.40T + 23T^{2} \)
29 \( 1 + 4.25T + 29T^{2} \)
31 \( 1 - 9.07T + 31T^{2} \)
37 \( 1 - 1.74T + 37T^{2} \)
41 \( 1 - 7.95T + 41T^{2} \)
43 \( 1 + 8.89T + 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 - 8.51T + 53T^{2} \)
59 \( 1 - 7.67T + 59T^{2} \)
61 \( 1 - 1.94T + 61T^{2} \)
67 \( 1 - 0.788T + 67T^{2} \)
71 \( 1 - 5.48T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 1.28T + 79T^{2} \)
83 \( 1 + 4.08T + 83T^{2} \)
89 \( 1 + 2.37T + 89T^{2} \)
97 \( 1 - 5.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.534711056562788620986556491733, −7.994161633014397889341414554312, −6.85835220760440089928627928690, −6.51657821095068523070446606849, −5.58814440738750453402582690095, −4.24018134683575526941493658189, −3.77116765835920442107650954761, −2.98690796114780750824466484933, −2.19942232436056688573320124342, −1.00066617030322062623973204524, 1.00066617030322062623973204524, 2.19942232436056688573320124342, 2.98690796114780750824466484933, 3.77116765835920442107650954761, 4.24018134683575526941493658189, 5.58814440738750453402582690095, 6.51657821095068523070446606849, 6.85835220760440089928627928690, 7.994161633014397889341414554312, 8.534711056562788620986556491733

Graph of the $Z$-function along the critical line