Properties

Label 2-4000-1.1-c1-0-14
Degree $2$
Conductor $4000$
Sign $1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.79·3-s + 2.30·7-s + 4.82·9-s − 5.01·11-s − 1.36·13-s + 7.56·17-s + 4.96·19-s − 6.44·21-s − 0.225·23-s − 5.09·27-s − 8.18·29-s − 6.87·31-s + 14.0·33-s + 6.20·37-s + 3.81·39-s + 4.69·41-s − 4.30·43-s + 4.39·47-s − 1.69·49-s − 21.1·51-s + 10.4·53-s − 13.8·57-s + 0.0364·59-s + 9.99·61-s + 11.1·63-s − 14.6·67-s + 0.629·69-s + ⋯
L(s)  = 1  − 1.61·3-s + 0.870·7-s + 1.60·9-s − 1.51·11-s − 0.378·13-s + 1.83·17-s + 1.13·19-s − 1.40·21-s − 0.0469·23-s − 0.981·27-s − 1.52·29-s − 1.23·31-s + 2.44·33-s + 1.02·37-s + 0.610·39-s + 0.733·41-s − 0.655·43-s + 0.641·47-s − 0.242·49-s − 2.96·51-s + 1.43·53-s − 1.83·57-s + 0.00474·59-s + 1.27·61-s + 1.39·63-s − 1.79·67-s + 0.0758·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9600297221\)
\(L(\frac12)\) \(\approx\) \(0.9600297221\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.79T + 3T^{2} \)
7 \( 1 - 2.30T + 7T^{2} \)
11 \( 1 + 5.01T + 11T^{2} \)
13 \( 1 + 1.36T + 13T^{2} \)
17 \( 1 - 7.56T + 17T^{2} \)
19 \( 1 - 4.96T + 19T^{2} \)
23 \( 1 + 0.225T + 23T^{2} \)
29 \( 1 + 8.18T + 29T^{2} \)
31 \( 1 + 6.87T + 31T^{2} \)
37 \( 1 - 6.20T + 37T^{2} \)
41 \( 1 - 4.69T + 41T^{2} \)
43 \( 1 + 4.30T + 43T^{2} \)
47 \( 1 - 4.39T + 47T^{2} \)
53 \( 1 - 10.4T + 53T^{2} \)
59 \( 1 - 0.0364T + 59T^{2} \)
61 \( 1 - 9.99T + 61T^{2} \)
67 \( 1 + 14.6T + 67T^{2} \)
71 \( 1 + 1.24T + 71T^{2} \)
73 \( 1 + 3.30T + 73T^{2} \)
79 \( 1 + 8.12T + 79T^{2} \)
83 \( 1 - 13.8T + 83T^{2} \)
89 \( 1 + 0.854T + 89T^{2} \)
97 \( 1 + 5.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144472193589035773272705788671, −7.52969951757823987134186906716, −7.17913079797107725957699811272, −5.75490366571127792368216143016, −5.52832881642770417602979651425, −5.08509351425393120042852666914, −4.10024356054548065035827679129, −2.94983992876031083564825909209, −1.67617333844947731914245693546, −0.62782474698862431601926461297, 0.62782474698862431601926461297, 1.67617333844947731914245693546, 2.94983992876031083564825909209, 4.10024356054548065035827679129, 5.08509351425393120042852666914, 5.52832881642770417602979651425, 5.75490366571127792368216143016, 7.17913079797107725957699811272, 7.52969951757823987134186906716, 8.144472193589035773272705788671

Graph of the $Z$-function along the critical line