L(s) = 1 | − 2.79·3-s + 2.30·7-s + 4.82·9-s − 5.01·11-s − 1.36·13-s + 7.56·17-s + 4.96·19-s − 6.44·21-s − 0.225·23-s − 5.09·27-s − 8.18·29-s − 6.87·31-s + 14.0·33-s + 6.20·37-s + 3.81·39-s + 4.69·41-s − 4.30·43-s + 4.39·47-s − 1.69·49-s − 21.1·51-s + 10.4·53-s − 13.8·57-s + 0.0364·59-s + 9.99·61-s + 11.1·63-s − 14.6·67-s + 0.629·69-s + ⋯ |
L(s) = 1 | − 1.61·3-s + 0.870·7-s + 1.60·9-s − 1.51·11-s − 0.378·13-s + 1.83·17-s + 1.13·19-s − 1.40·21-s − 0.0469·23-s − 0.981·27-s − 1.52·29-s − 1.23·31-s + 2.44·33-s + 1.02·37-s + 0.610·39-s + 0.733·41-s − 0.655·43-s + 0.641·47-s − 0.242·49-s − 2.96·51-s + 1.43·53-s − 1.83·57-s + 0.00474·59-s + 1.27·61-s + 1.39·63-s − 1.79·67-s + 0.0758·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9600297221 |
L(21) |
≈ |
0.9600297221 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.79T+3T2 |
| 7 | 1−2.30T+7T2 |
| 11 | 1+5.01T+11T2 |
| 13 | 1+1.36T+13T2 |
| 17 | 1−7.56T+17T2 |
| 19 | 1−4.96T+19T2 |
| 23 | 1+0.225T+23T2 |
| 29 | 1+8.18T+29T2 |
| 31 | 1+6.87T+31T2 |
| 37 | 1−6.20T+37T2 |
| 41 | 1−4.69T+41T2 |
| 43 | 1+4.30T+43T2 |
| 47 | 1−4.39T+47T2 |
| 53 | 1−10.4T+53T2 |
| 59 | 1−0.0364T+59T2 |
| 61 | 1−9.99T+61T2 |
| 67 | 1+14.6T+67T2 |
| 71 | 1+1.24T+71T2 |
| 73 | 1+3.30T+73T2 |
| 79 | 1+8.12T+79T2 |
| 83 | 1−13.8T+83T2 |
| 89 | 1+0.854T+89T2 |
| 97 | 1+5.51T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.144472193589035773272705788671, −7.52969951757823987134186906716, −7.17913079797107725957699811272, −5.75490366571127792368216143016, −5.52832881642770417602979651425, −5.08509351425393120042852666914, −4.10024356054548065035827679129, −2.94983992876031083564825909209, −1.67617333844947731914245693546, −0.62782474698862431601926461297,
0.62782474698862431601926461297, 1.67617333844947731914245693546, 2.94983992876031083564825909209, 4.10024356054548065035827679129, 5.08509351425393120042852666914, 5.52832881642770417602979651425, 5.75490366571127792368216143016, 7.17913079797107725957699811272, 7.52969951757823987134186906716, 8.144472193589035773272705788671