Properties

Label 4000.2.a.p
Level 40004000
Weight 22
Character orbit 4000.a
Self dual yes
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.26208800000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x811x6+34x430x2+5 x^{8} - 11x^{6} + 34x^{4} - 30x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q3β6q7+(β5+1)q9+(β7β6β4)q11+(β3+1)q13+(β5β3β2+2)q17+(β7β6β4β1)q19++(3β7+3β6++β1)q99+O(q100) q - \beta_{4} q^{3} - \beta_{6} q^{7} + ( - \beta_{5} + 1) q^{9} + ( - \beta_{7} - \beta_{6} - \beta_{4}) q^{11} + (\beta_{3} + 1) q^{13} + ( - \beta_{5} - \beta_{3} - \beta_{2} + 2) q^{17} + (\beta_{7} - \beta_{6} - \beta_{4} - \beta_1) q^{19}+ \cdots + ( - 3 \beta_{7} + 3 \beta_{6} + \cdots + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q9+8q13+20q1712q2116q29+36q33+28q37+8q41+16q49+48q53+20q5728q6128q69+44q77+20q81+20q89+4q93++16q97+O(q100) 8 q + 8 q^{9} + 8 q^{13} + 20 q^{17} - 12 q^{21} - 16 q^{29} + 36 q^{33} + 28 q^{37} + 8 q^{41} + 16 q^{49} + 48 q^{53} + 20 q^{57} - 28 q^{61} - 28 q^{69} + 44 q^{77} + 20 q^{81} + 20 q^{89} + 4 q^{93}+ \cdots + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x811x6+34x430x2+5 x^{8} - 11x^{6} + 34x^{4} - 30x^{2} + 5 : Copy content Toggle raw display

β1\beta_{1}== 2ν 2\nu Copy content Toggle raw display
β2\beta_{2}== (ν6+12ν437ν2+13)/9 ( -\nu^{6} + 12\nu^{4} - 37\nu^{2} + 13 ) / 9 Copy content Toggle raw display
β3\beta_{3}== (2ν6+18ν432ν21)/3 ( -2\nu^{6} + 18\nu^{4} - 32\nu^{2} - 1 ) / 3 Copy content Toggle raw display
β4\beta_{4}== (2ν724ν5+83ν371ν)/9 ( 2\nu^{7} - 24\nu^{5} + 83\nu^{3} - 71\nu ) / 9 Copy content Toggle raw display
β5\beta_{5}== (7ν666ν4+151ν264)/9 ( 7\nu^{6} - 66\nu^{4} + 151\nu^{2} - 64 ) / 9 Copy content Toggle raw display
β6\beta_{6}== (2ν7+21ν556ν3+26ν)/3 ( -2\nu^{7} + 21\nu^{5} - 56\nu^{3} + 26\nu ) / 3 Copy content Toggle raw display
β7\beta_{7}== (2ν721ν5+59ν341ν)/3 ( 2\nu^{7} - 21\nu^{5} + 59\nu^{3} - 41\nu ) / 3 Copy content Toggle raw display
ν\nu== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+β3+β2+6)/2 ( \beta_{5} + \beta_{3} + \beta_{2} + 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β7+2β6+5β1)/2 ( 2\beta_{7} + 2\beta_{6} + 5\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (7β5+6β3+13β2+33)/2 ( 7\beta_{5} + 6\beta_{3} + 13\beta_{2} + 33 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== 9β7+8β63β4+15β1 9\beta_{7} + 8\beta_{6} - 3\beta_{4} + 15\beta_1 Copy content Toggle raw display
ν6\nu^{6}== (47β5+35β3+101β2+200)/2 ( 47\beta_{5} + 35\beta_{3} + 101\beta_{2} + 200 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (133β7+109β663β4+188β1)/2 ( 133\beta_{7} + 109\beta_{6} - 63\beta_{4} + 188\beta_1 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.464606
1.81062
−1.05053
2.53025
−2.53025
1.05053
−1.81062
0.464606
0 −2.79703 0 0 0 2.30294 0 4.82335 0
1.2 0 −2.74204 0 0 0 1.42258 0 4.51880 0
1.3 0 −0.693685 0 0 0 −4.52199 0 −2.51880 0
1.4 0 −0.420293 0 0 0 −2.86781 0 −2.82335 0
1.5 0 0.420293 0 0 0 2.86781 0 −2.82335 0
1.6 0 0.693685 0 0 0 4.52199 0 −2.51880 0
1.7 0 2.74204 0 0 0 −1.42258 0 4.51880 0
1.8 0 2.79703 0 0 0 −2.30294 0 4.82335 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.a.p yes 8
4.b odd 2 1 inner 4000.2.a.p yes 8
5.b even 2 1 4000.2.a.o 8
5.c odd 4 2 4000.2.c.i 16
8.b even 2 1 8000.2.a.by 8
8.d odd 2 1 8000.2.a.by 8
20.d odd 2 1 4000.2.a.o 8
20.e even 4 2 4000.2.c.i 16
40.e odd 2 1 8000.2.a.bz 8
40.f even 2 1 8000.2.a.bz 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.o 8 5.b even 2 1
4000.2.a.o 8 20.d odd 2 1
4000.2.a.p yes 8 1.a even 1 1 trivial
4000.2.a.p yes 8 4.b odd 2 1 inner
4000.2.c.i 16 5.c odd 4 2
4000.2.c.i 16 20.e even 4 2
8000.2.a.by 8 8.b even 2 1
8000.2.a.by 8 8.d odd 2 1
8000.2.a.bz 8 40.e odd 2 1
8000.2.a.bz 8 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4000))S_{2}^{\mathrm{new}}(\Gamma_0(4000)):

T3816T36+69T3440T32+5 T_{3}^{8} - 16T_{3}^{6} + 69T_{3}^{4} - 40T_{3}^{2} + 5 Copy content Toggle raw display
T7836T76+389T741540T72+1805 T_{7}^{8} - 36T_{7}^{6} + 389T_{7}^{4} - 1540T_{7}^{2} + 1805 Copy content Toggle raw display
T11864T116+1344T1149280T112+1280 T_{11}^{8} - 64T_{11}^{6} + 1344T_{11}^{4} - 9280T_{11}^{2} + 1280 Copy content Toggle raw display
T1344T13332T132+72T13+144 T_{13}^{4} - 4T_{13}^{3} - 32T_{13}^{2} + 72T_{13} + 144 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T816T6++5 T^{8} - 16 T^{6} + \cdots + 5 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T836T6++1805 T^{8} - 36 T^{6} + \cdots + 1805 Copy content Toggle raw display
1111 T864T6++1280 T^{8} - 64 T^{6} + \cdots + 1280 Copy content Toggle raw display
1313 (T44T3++144)2 (T^{4} - 4 T^{3} + \cdots + 144)^{2} Copy content Toggle raw display
1717 (T410T3+304)2 (T^{4} - 10 T^{3} + \cdots - 304)^{2} Copy content Toggle raw display
1919 T8140T6++800000 T^{8} - 140 T^{6} + \cdots + 800000 Copy content Toggle raw display
2323 T8116T6++5 T^{8} - 116 T^{6} + \cdots + 5 Copy content Toggle raw display
2929 (T4+8T319T2++25)2 (T^{4} + 8 T^{3} - 19 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
3131 T8224T6++8398080 T^{8} - 224 T^{6} + \cdots + 8398080 Copy content Toggle raw display
3737 (T414T3+80)2 (T^{4} - 14 T^{3} + \cdots - 80)^{2} Copy content Toggle raw display
4141 (T44T3+695)2 (T^{4} - 4 T^{3} + \cdots - 695)^{2} Copy content Toggle raw display
4343 T8104T6++10125 T^{8} - 104 T^{6} + \cdots + 10125 Copy content Toggle raw display
4747 T8176T6++96605 T^{8} - 176 T^{6} + \cdots + 96605 Copy content Toggle raw display
5353 (T212T+16)4 (T^{2} - 12 T + 16)^{4} Copy content Toggle raw display
5959 T8336T6++1280 T^{8} - 336 T^{6} + \cdots + 1280 Copy content Toggle raw display
6161 (T4+14T3+355)2 (T^{4} + 14 T^{3} + \cdots - 355)^{2} Copy content Toggle raw display
6767 T8536T6++205825280 T^{8} - 536 T^{6} + \cdots + 205825280 Copy content Toggle raw display
7171 T8364T6++2151680 T^{8} - 364 T^{6} + \cdots + 2151680 Copy content Toggle raw display
7373 (T4192T2+2384)2 (T^{4} - 192 T^{2} + \cdots - 2384)^{2} Copy content Toggle raw display
7979 T8116T6++1280 T^{8} - 116 T^{6} + \cdots + 1280 Copy content Toggle raw display
8383 T8356T6++15753125 T^{8} - 356 T^{6} + \cdots + 15753125 Copy content Toggle raw display
8989 (T25T5)4 (T^{2} - 5 T - 5)^{4} Copy content Toggle raw display
9797 (T48T3++4016)2 (T^{4} - 8 T^{3} + \cdots + 4016)^{2} Copy content Toggle raw display
show more
show less