L(s) = 1 | − 0.175i·3-s + 3.69i·7-s + 2.96·9-s + 0.648·21-s + 9.14i·23-s − 1.04i·27-s + 10.3·29-s − 12.7·41-s − 2.96i·43-s − 3.95i·47-s − 6.65·49-s + 6.15·61-s + 10.9i·63-s + 8.18i·67-s + 1.60·69-s + ⋯ |
L(s) = 1 | − 0.101i·3-s + 1.39i·7-s + 0.989·9-s + 0.141·21-s + 1.90i·23-s − 0.201i·27-s + 1.92·29-s − 1.99·41-s − 0.451i·43-s − 0.577i·47-s − 0.951·49-s + 0.787·61-s + 1.38i·63-s + 0.999i·67-s + 0.193·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.859283297 |
L(21) |
≈ |
1.859283297 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+0.175iT−3T2 |
| 7 | 1−3.69iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−13T2 |
| 17 | 1−17T2 |
| 19 | 1+19T2 |
| 23 | 1−9.14iT−23T2 |
| 29 | 1−10.3T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1+12.7T+41T2 |
| 43 | 1+2.96iT−43T2 |
| 47 | 1+3.95iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+59T2 |
| 61 | 1−6.15T+61T2 |
| 67 | 1−8.18iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1+79T2 |
| 83 | 1−16.8iT−83T2 |
| 89 | 1+5.66T+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.564299672327996903108788758562, −8.038194605984473392687238965889, −7.05126978821782211943391897693, −6.53402666873216640974815423955, −5.51901918797176949030565844084, −5.09082652579830570529980949913, −4.03432603270184418855965705381, −3.12711380461195135348024704427, −2.18069211587366132910647102342, −1.28644976561872794742822177659,
0.57372597763922028045587010865, 1.53061729892563565847636175894, 2.79760983656697653933147634410, 3.78450621781602904589294708336, 4.50626748564145703209401291594, 4.94233053711861396211075222202, 6.43169365744567370031207064480, 6.69563872788178179098668053295, 7.50209891694416844564853100011, 8.204108745552411177847737895346