Properties

Label 2-4000-5.4-c1-0-28
Degree $2$
Conductor $4000$
Sign $-i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.175i·3-s + 3.69i·7-s + 2.96·9-s + 0.648·21-s + 9.14i·23-s − 1.04i·27-s + 10.3·29-s − 12.7·41-s − 2.96i·43-s − 3.95i·47-s − 6.65·49-s + 6.15·61-s + 10.9i·63-s + 8.18i·67-s + 1.60·69-s + ⋯
L(s)  = 1  − 0.101i·3-s + 1.39i·7-s + 0.989·9-s + 0.141·21-s + 1.90i·23-s − 0.201i·27-s + 1.92·29-s − 1.99·41-s − 0.451i·43-s − 0.577i·47-s − 0.951·49-s + 0.787·61-s + 1.38i·63-s + 0.999i·67-s + 0.193·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.859283297\)
\(L(\frac12)\) \(\approx\) \(1.859283297\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 0.175iT - 3T^{2} \)
7 \( 1 - 3.69iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 9.14iT - 23T^{2} \)
29 \( 1 - 10.3T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 12.7T + 41T^{2} \)
43 \( 1 + 2.96iT - 43T^{2} \)
47 \( 1 + 3.95iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 6.15T + 61T^{2} \)
67 \( 1 - 8.18iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 16.8iT - 83T^{2} \)
89 \( 1 + 5.66T + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.564299672327996903108788758562, −8.038194605984473392687238965889, −7.05126978821782211943391897693, −6.53402666873216640974815423955, −5.51901918797176949030565844084, −5.09082652579830570529980949913, −4.03432603270184418855965705381, −3.12711380461195135348024704427, −2.18069211587366132910647102342, −1.28644976561872794742822177659, 0.57372597763922028045587010865, 1.53061729892563565847636175894, 2.79760983656697653933147634410, 3.78450621781602904589294708336, 4.50626748564145703209401291594, 4.94233053711861396211075222202, 6.43169365744567370031207064480, 6.69563872788178179098668053295, 7.50209891694416844564853100011, 8.204108745552411177847737895346

Graph of the $Z$-function along the critical line